Эпохи и фазы складчатости и их роль в развитии структуры земной коры. Коллизионные и аккреционные складчатые области (пояса). Развитие земной коры

22.09.2019

Фазы складчатости

сравнительно кратковременные явления ускорения длительных и непрерывных в целом тектонических движений (в особенности складкообразования), зафиксированные в толщах пород угловым несогласием, благодаря сочетанию с поднятиями и размывом. Понятие о Ф. с. впервые появилось в трудах франц. геологов А. д"Орбиньи и Л. Эли де Бомона. Более полно оно было сформулировано нем. геологом Х. Штилле (1913, 1924), который рассмотрел распределение складчатости во времени и дал перечень фаз складкообразования, получившие наименование по местам их типичного проявления. По Штилле, Ф. с. относительно кратковременны, повсеместны в планетарном масштабе и разделены эпохами тектонического покоя. Эти представления подверглись критике со стороны В. И. Попова (1933), Н. С. Шатского (См. Шатский) (1937), Дж. Гиллули (1949), А. Л. Яншин а (1966) и др., которые утверждали длительность складкообразования, отсутствие эпох тектонического покоя и разновременность Ф. с. в разных областях Земли.

Выясняется, что наряду с возрастным скольжением Ф. с. даже в пределах отдельных складчатых сооружений наблюдается общая тенденция синхронности проявления основных эпох тектонических деформаций (нетолько складчатых) в глобальном масштабе. См. Тектонические эпохи .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Фазы складчатости" в других словарях:

    Сравнительно кратковременное явление ускорения вообще длительных и непрерывных тект. движений, в особенности складкообразования, обычно зафиксированный угловым несогласием, благодаря сочетанию с колебательными движениями переменного знака.… … Геологическая энциклопедия

    Перемещение фронта складчатости от более древней фазы складчатости к более молодой (Stille, 1924). Различают М. с., происходящую поперек к главному простиранию складчатой обл., и М. с., вдоль простирания складчатых структур. Геологический словарь … Геологическая энциклопедия

    - … Википедия

    Третья планета солнечной системы. Обращается вокруг Солнца по орбите с эксцентриситетом 0,0167, на среднем расстоянии 149,5 104 км, с периодом 365,2564 звездных суток, скорость движения по орбите 29,76 км/сек, собственное вращение прямое,… … Геологическая энциклопедия

    - … Википедия

    Варисская, варисцийская складчатость, совокупность процессов второй половины палеозойской эры (конец девона начало триаса) интенсивной складчатости, горообразования и гранитоидного интрузивного магматизма, проявившихся в палеозойских… … Большая советская энциклопедия

    Варисцийская (варисская) складчатость (по назв. горн. группы Центра Европы, известной у древних римлян как Герцинский Лес Hercynia Silva, Saltus Hercynius; термин варисцийская, варисская складчатость по древнему назв. областей Саксонии,… … Геологическая энциклопедия - (Magyarorszag), Bенгерская Hародная Pеспубликa (Magyar Nepkцztarsasбg), гос во в Центр. Eвропе. Граничит на C. c Чехословакией, на B. c CCCP и Pумынией, на Ю. c Югославией, на З. c Aвстрией. Пл. 93 тыс. км2. Hac. 10,7 млн. чел. (1982).… … Геологическая энциклопедия

Геологическое строение. В отличие от других континентов, которые являются крупными осколками раздробившихся праматериков Гондваны и Лавразии, Евразия образовалась в результате объединения древних литосферных блоков . Сближающиеся под действием внутренних процессов, в разное геологическое время эти блоки соединялись «швами» складчатых поясов, постепенно «составив» материк в его современной конфигурации и размерах (рис. 9).

На раннем этапе геологической истории, «сложив» праматерик Лавразия, объединились осколки Пангеи - древние Северо-Американская, ВосточноЕвропейская, Сибирская и Китайская платформы. В зоне их схождения образовались древние складчатые пояса - Атлантический и Урало-Монгольский. Затем Северная Америка была «оторвана» от Лавразии; на месте рифтового раскола «раскрылась» впадина Атлантического океана. Дрейфуя на запад, Северо-Американская плита «обогнула» планету и вторично присоединилась к Евразии - уже на востоке. В зоне соединения возникли складчатые системы

Северо-Восточной Сибири. Позднее с юго-востока к Евразии придвинулся еще один осколок Гондваны - Индо-Австралийская литосферная плита, и в зоне их сближения заложился Гималайский складчатый пояс. Одновременно вдоль восточной окраины Евразии в зоне ее контакта с Тихоокеанской литосферной плитой начал формироваться Тихоокеанский складчатый пояс. Развитие обоих складчатых поясов продолжается и в настоящее геологическое время. Всю южную окраину Евразиатской плиты оконтуривает Альпийско-Гималайский пояс, формирующийся под давлением осколков Гондваны - Индостана, Аравии и Африки. А на восточной окраине материка к ее краю «придвигаются» цепи вулканических островных дуг Тихоокеанского пояса, «доращивая» собой массив Евразии.

Современный континент Евразия располагается в зоне сочленения пяти крупных литосферных плит. Четыре из них - континентальные, одна - океаническая . БоЂльшая часть Евразии принадлежит континентальной Евразиатской плите. Южные полуострова Азии - двум разным континентальным плитам: Аравийской (Аравийский п-ов) и Индо-Австралийской (п-ов Индостан). Северо-восточная окраина Евразии - это часть четвертой континентальной плиты - Северо-Американской. А восточная часть материка с прилегающими островами является зоной взаимодействия Евразии с океанической Тихоокеанской плитой. В зонах сочленения литосферных плит идет фор мирование складчатых поясов. На южном краю Евразиатской плиты - Альпийско-Гималайского поя- са: в нем располагаются южная окраина Европы, п-ова Крым и Малая Азия, Кавказ, Армянское и Иранское нагорья, Гималаи. На восточном краю материка - Тихоокеанского пояса, в котором находятся п-ов Камчатка, острова Сахалин, Курильские, Японские, Малайский архипелаг.

В состав материка входит пять древних платформ; все они - «осколки» древнего праматерика Пангея. Три платформы - Восточно-Европейская , Сибирская и Китайматериков ская - после раскола Пангеи составляли древний северный материк Лавразия. Две - Аравийская и Индийская - входили в состав древнего южного материка Гондвана. Платформы «соединены» между собой складчатыми поясами, сформировавшимися в разное геологическое время.

Рис. 9. Этапы формирования

Все древние платформы Евразии имеют двухъярусное строение: на кристаллическом фундаменте залегают породы осадочного чехла. Фундаменты сложены магматическими и метаморфическими породами, осадочный чехол - морскими и континентальными осадочными породами. В составе каждой платформы есть плиты и щиты.

Каждая из платформ имеет свои особенности. Китайская платформа раздроблена на несколько разрозненных блоков, самые крупные из которых - Китайско-Корейский и Южно-Китайский . Сибирская и Индийская платформы до основания пронизаны древними мощными трещинами и вулканическими внедрениями (интрузиями). Фундамент Восточно-Европейской платформы расчленен прогибами и глубокими впадинами. Аравийскую платформу раскалывает и растягивает на части современный разлом - рифт (рис. 10). Осадочные чехлы платформ различаются мощностью и слагающими их породами. Для платформ Евразии характерна разная интенсивность современных тектонических движений.

Складчатые пояса в Евразии образовывались в разное геологическое время. Во время древней складчатости формировались

Рис. 10. Рифт

Атлантический и Урало-Монгольский пояса. В дальнейшем разные области этих поясов развивались по-разному: одни испытывали опускание, другие - поднятие. Те, которые опускались, затапливались морями, и на складчатом основании постепенно накопилась мощная толща морских осадков. Эти области приобрели двухъярусное строение. Это - молодые платформы , крупнейшие из которых - Западно-Европейская и Скифская (в Европе), Западно-Сибирская и Туранская (в Азии). Области, испытывавшие поднятия, представляли собой складчатые горные системы (Тянь-Шань, Алтай, Саяны). В течение всего времени своего существования их складки (горные хребты) подвергались воздействию внешних сил. Поэтому в настоящее время они сильно разрушены, и на поверхности обнажены древние кристаллические породы.

Альпийско-Гималайский и Тихоокеанский складчатые пояса возникли в более позднее геологическое время и еще окончательно не сформированы. Они - молодые. Поверхность гор, которыми представлены эти пояса, еще не успела разрушиться. Поэтому она сложена молодыми осадочными породами морского происхождения, скрывающими на значительной глубине кристаллические ядра складок. Эти пояса характеризуются высокой сейсмичностью - здесь проявляется вулканизм, концентрируются очаги землетрясений. В таких районах вулканические породы перекрывают осадочные или внедрены в их толщу.

Полезные ископаемые Евразии - горючие, металлические и неметаллические - представлены крупнейшими месторождениями. Их размещение тесно связано с геологическим строением материка и его рельефом.

В каких условиях и как происходит образование разных групп минерального сырья (горючего, металлического, неметаллического)?

Наиболее разнообразное сочетание разного по происхождению минерального сырья характерно для платформ . Крупные месторождения руд металлов выявлены в кристаллическом фундаменте древних платформ на щитах, где он расположен близко к поверхности. Это железо, марганец, медь, никель, вольфрам, золото, платина, молибден, уран, полиметаллы. С вулканизмом, проявлявшимся на древних платформах, связаны якутские и индийские алмазы.

Алмазы находят в кристаллическом фундаменте древних платформ, попадавших в зону сжатия литосферы. Сдавливаемые, платформы раскалывались, и в трещины фундамента внедрялось мантийное вещество. Этот процесс получил название траппового магматизма (или вулканизма). Очень высокое давление в трещинах приводило к образованию концентрических структур - трубок взрыва, или кимберлитовых трубок. А в них - алмазов - самых твердых минералов на Земле.

Осадочный чехол платформ - молодых и древних - содержит богатые запасы каменной и калийных солей, серы, фосфоритов. В прогибах фундамента платформ сконцентрированы бурые и каменные угли. Угольный пояс протягивается через весь материк - от островов Великобритании через Западную Европу, Восточно-Европейскую равнину, Центральную Азию и Якутию, раздваиваясь на востоке в северный Китай и в северо-восточный Индостан. Нефть и газ содержат осадочные толщи, заполняющие прогибы платформ - ЗападноСибирской, Туранской, Скифской, шельфа Северного моря. Мощные нефте- и газоносные зоны приурочены к областям сочленения платформ и молодых поясов - краевым прогибам. Окаймляя с обеих сторон Альпийско-Гималайский складчатый пояс, они протягиваются по Средне- и Нижнедунайским низменностям, Прикарпатью, предгорьям Северного Кавказа, Каспию, Персидскому заливу, северному Индостану, Юго-Восточной Азии. Пески, гравий, глины, известняки, доломиты, слагающие верхний ярус платформ, используются как строительный материал.

Со складчатыми поясами связаны металлические пояса Евразии. Железные, свинцово-цинковые, оловянные, ртутные, урановые и полиметаллические руды концентрируются в пределах древних складчатых поясов - в горах Пиренейского полуострова, Западной Европы, Урала, Южной Сибири, Центральной Азии.

Металлы есть и в молодых складчатых поясах, но приурочены месторождения к их самым древним структурам. Так, горы Тихоокеанского пояса вмещают мировые запасы вольфрама и олова, золото. Через юг Китая, Мьянму, Таиланд в Малайзию и Индонезию протягивается оловянный пояс Юго-Восточной Азии, соответствующий наиболее древним структурам Гималайского пояса. Здесь же сосредоточены железные руды, свинец, цинк, никель, золото, серебро, слюда, графит.

В современных складчатых поясах преобладают месторождения осадочных полезных ископаемых. Это нефть и угли межгорных долин Альп, Иранского нагорья, Малайского архипелага. На Иранском нагорье находятся крупнейшие в мире месторождения серы, на п-ове Малая Азия - фосфориты, асбест. Для Апеннин, Балкан, Малой Азии характерны металлические руды осадочного происхождения (бокситы, железные и магниевые руды).

Общие черты рельефа. Средняя высота поверхности Евразии над уровнем моря - 840 м. Евразии принадлежат самая высокая вершина планеты - г. Джомолунг ма (8848 м) (рис. 11) и самый глубокий разлом на суше Земли - котловина озера Байкал (–1637 м).

Евразия обладает самыми обширными равнинами и самыми протяженными горными системами на планете. Главная черта ее рельефа - разнообразие - результат взаимного действия внутренних и внешних рельефообразующих процессов.

Связь рельефа с геологическим строением. Территория Евразии, как мозаика, составлена из платформенных блоков, соединенных разновозрастными складчатыми поясами. Поэтому в ее рельефе сочетаются крупные формы: обширные равнины и протяженные высокогорные пояса .

Рис. 11. Джомолунгма

В Евразии самые мощные горные системы находятся внутри массива материка (рис. 12, 13, 14). Наиболее приподнята центральная часть Азии: на высоту 4,5-8,6 км поднимаются горные системы Тянь-Шаня, Памира , Тибета, Куньлуня . С двух сторон - с юга и с востока - «макушка Азии» окаймлена горными барьерами, протягивающимися параллельно южной и вдоль восточной окраин материка. Они образованы современными складчатыми поясами. На юге в Альпийско-Гималайском поясе возвышаются Пиренеи , Альпы, Апеннины , Балканы, Карпаты , Кавказ, Малоазиатское, Армянское, Иранское нагорья, Памир , Гималаи, горы Индокитая (рис. 15). В Тихоокеанском поясе восточную цепь образуют горы Камчатки, Курильских, Японских и Филиппинских островов. Сочленяются оба пояса в узле Малайского архипелага. В обоих поясах абсолютные высоты превышают 5 км, типичны землетрясения силой до 8-9 баллов. В Тихоокеанском поясе проявляется вулканизм.

В Евразии крупнейшие равнины занимают периферийные части континента. На западе и севере - это Северо-Германская , Великопольская, Западно-Сибирская низменности; Восточно-Европейская равнина, Средне-Сибирское плоскогорье; они соответствуют платформам Лавразии. На южной окраине Евразии - равнина Руб-эль-Хали и Месопотамская низменность на Аравийском полуострове, плоскогорье Декан (рис. 16) и ИндоГангская низменность - на Индостане, соответствующие древним платформам Гондваны. Тектонические процессы на платформах пассивны и проявляются в медленных колебаниях поверхности.

Рис. 16. Плоскогорье Декан

Рельефообразующая работа внешних сил. Равнины и горы, созданные внутренними силами, постоянно изменяют свой рельеф (поверхность) под влиянием внешних сил. Обширность территории Евразии обусловливает разнообразие внешних сил, порождаемых ими процессов и создаваемых ими форм. Поэтому горы и равнины Евразии разнообразны не только по высоте и геологическому строению, но и по своему внешнему виду .

Для южных, юго-восточных окраин и центральных частей Евразии, где сезонно выпадают сильные ливни, типична созданная временными водными потоками густая сеть оврагов и балок. Равнины, сложенные рыхлыми породами, превращены в бедленды (рис. 18).

Внутри континента - в условиях континентальных климатов - в сухих холодных высокогорьях Центральной Азии и Южной Сибири, в жарких пустынях Аравии - рельеф формируется физическим выветриванием . Плато покрыты каменными россыпями, склоны - «каменными реками» щебня и гравия. На низменностях ветер перемещает песчаные гряды, барханы. На севере и востоке Сибири типичен мерзлотный рельеф: бугры пучения, полигоны обломочного материала перемежаются с протаивающими термокарстовыми котловинами (рис. 19).

Преимущественно в окраинных и в самых высоких горах - Альпах, Гималаях, на Кавказе, в Тянь-Шане, на Японских островах и Камчатке рельеф сформирован горными ледниками : ими выточены остроконечные вершины и гребни, глубокие долины - троги.

В Евразии широко представлены реликтовые формы, созданные древним покровным оледенением более 10 тыс. лет назад. Склоны гор полуостровов Скандинавского и Таймыр, Северного Урала, островов Северного Ледовитого океана отшлифованы (рис. 20), изрезаны трогами, а побережья расчленены фьордами (рис. 21) и обрамлены многочисленными островками - шхерами . На севере Европы, Западной Сибири и Среднесибирского плоскогорья ледниковые равнины и низменности чередуются с цепями моренных возвышенностей, с многочисленными озерными котловинами. Формы, созданные древним ледником, отчетливо выражены и в рельефе Беларуси.

Список литературы

1. География 9 класс/ Учебное пособие для 9 класса учреждений общего среднего образования с русским языком обучения/ Под редакцией Н. В. Науменко/ Минск «Народная асвета» 2011

Складчатые пояса планеты

Образовавшиеся $ 2,5$ млрд. лет назад древние платформы с момента своего формирования не менялись. Платформы отделяются друг от друга или от океана тектоническими складчатыми структурами с высокой тектонической активностью. Эти структуры получили название складчатых поясов .

Определение 1

Складчатый пояс – это складчатая тектоническая структура планетарных масштабов, отделяющая древние платформы друг от друга.

Они могут иметь протяженность тысячи километров и большую ширину. В пределах складчатых поясов происходит процесс горообразования. На планете выделяется пять складчатых поясов:

Тихоокеанский складчатый пояс . Он кольцом охватывает Тихий океан и идет по краю Австралии, Азии, двух Америк, Антарктиды. Пояс с внешней стороны окружен древними платформами: Гиперборейской – на севере, на западе – Сибирской, Южно-Китайской, Китайско-Корейской, Австралийской . На востоке расположены Североамериканская и Южноамериканская платформы, а на юге – Антарктическая ;

Урало-Монгольский складчатый пояс . Начинается пояс от Новой Земли и тянется на юг вдоль Урала до Казахстана и поворачивает на восток. Затем он идет через Китай и Монголию , снова выходит на территорию России и доходит до Сахалина . Северо-западную часть пояса, идущую с севера на юг, называют Урало-Сибирским . Юго-Восточную часть, направленную с запада на восток – Центрально-Азиатским . Протянувшись на огромное расстояние в северной части он соединяется с Северо-Атлантическим поясом, на востоке – с Западно-Тихоокеанским , а в срединной части соединя ется с Альпийско-Гималайским . Урало-Могольский пояс отделяет Восточно-Европейскую, Таримскую и Китайско-Корейскую платформы от Сибирской. В этом поясе проявляются эпохи складчатости:

  • Байкальская складчатость;
  • Каледонская складчатость;
  • Герцинская складчатость;
  • Салаирская складчатость.

Есть в Урало-Монгольском поясе эпигерцинские плиты:

  • Западно-Сибирская плита;
  • Туранская плита, её северная и центральная часть;
  • Таймырская плита.

Альпийско-Гималайский складчатый пояс . Свое начало он берет в Карибском море, но Атлантический океан его прерывает. Выйдя снова на побережье материка, пояс идет по странам Средиземного моря, затем Ирану, Афганистану и Пакистану . Почти соединяется с Урало-Монгольским поясом в районе Тянь-Шаня и к северу от Индии идет через страны Юго-Восточной Азии . Заканчивается пояс в Индонезии и граничит с Западно-Тихоокеанским . Пояс тоже отделяет обломки Гондваны, лежащие к югу, и ряд северных платформ.

Северо-Атлантический складчатый пояс. Пояс протянулся вдоль восточной части Северной Америки , направляясь на северо-восток. Тоже прерывается Атлантическим океаном и выходит на северо-западный край Европы . На юге происходит его соединение с Альпийско-Гималайским поясом, а на севере – с Арктическим и Урало-Монгольским . Пояс отделяет Северо-Американскую и Восточно-Европейскую платформы.

В поясе тоже наблюдаются эпохи складчатости :

  • Каледонская складчатость;
  • Герцинская складчатость;
  • Альпийская складчатость.

Арктический складчатый пояс . От Канадского Арктического архипелага пояс проходит через северо-восточную часть Гренландии до полуострова Таймыр . Западным концом в районе Гренландии он соединяется с Северо-Атлантическим поясом , а восточным концом – с Урало-Монгольским поясом . Соединение происходит в районе Таймыра и Новой Земли. К югу от пояса лежат Северо-Американская и Сибирская платформы, а на севере – Гиперборейская. В поясе есть одна эпоха складчатости – Каледонская.

Молодые складчатые пояса имеют свои признаки:

  • Наличие на местности высоких гор;
  • Острые пиковые вершины;
  • Высокую сейсмичность района;
  • Значительную расчлененность рельефа;
  • Простирание горных хребтов вдоль складок местности.

Развитие складчатых поясов

Складчатые пояса планеты образовались в пределах древних океанов, а также на их окраине. Об этом свидетельствуют офиолиты – остатки поднятой океанической коры и литосферы. На месте древнего Палеоазиатского океана появился Урало-Монгольский складчатый пояс, а Альпийско-Гималайский пояс связан с океаном Тетис . Северо-Атлантический и Арктический складчатые пояса имеют свои океаны – у первого пояса океан Япетус , у второго – Бореальный океан . За исключением Тихого океана , все остальные возникли при распаде древнего суперконтинента Пангеи . Этот континент существовал в середине протерозоя и включал все современные платформы. В позднем протерозое начинают зарождаться складчатые пояса. Происходит огромное количество масштабных процессов – появляются новые глубоководные моря, островные дуги. Края морей смыкаются не только друг с другом, но и с островами, приводя к возникновению горных систем. Даже в пределах одного пояса одинаковые процессы происходили в разное время и разными путями.

Замечание 1

В образовании складчатых поясов общим является то, что бассейн с корой океанического типа превращается, в конечном итоге, в ороген , мощностью $60$-$70$ км и зрелой континентальной корой. Это говорит о том, что преобладающее растяжение и опускание в конце цикла сменяется сжатием и поднятием . Но, условия заложения бассейнов океанического типа и условия формирования орогенов, различны, особенно на средних стадиях их развития.

В развитии складчатых поясов в целом можно выделить несколько стадий:

  • Стадия заложения подвижных поясов;
  • Начальная стадия развития;
  • Зрелая стадия подвижных поясов;
  • Орогенная стадия – главная стадия их образования;
  • Тафрогенная стадия – расползание горных сооружений с образованием тафрогенов – грабенов. Эта стадия гомологична раннеавлакогенной стадии развития древних платформ.

Складчатые пояса разделены на два основных типа :

  • Межконтинентальные. Возникают на месте исчезающих океанов между сближающимися континентами;
  • Окраинно-континентальные. Их возникновение связано с зонами субдукции океанического дна под континенты.

Складчатые пояса и горный рельеф

Со складчатыми поясами планеты связаны горные формы рельеф а . В наше время процесс горообразования происходит в пределах Тихоокеанского кольца . Не полностью завершилось образование гор и в Альпийско-Гималайском складчатом поясе. Свое развитие продолжают Памир, Кавказ, Гималаи, о чем свидетельствуют землетрясения в этих районах.

Образование гор в эпоху складчатости происходит в два этапа:

  • Столкновение платформ;
  • Поднятие погруженных в мантию пород, смятие пластов и образование горных хребтов.

При столкновении платформ происходит прогибание земной коры, потому что породы, вытесняемые из зоны столкновения, выталкивающую силу жидкой мантии преодолевают легче, чем силу тяжести. На краях прогибов возникают тектонические разломы, через которые выходит расплавленная магма. В результате образуются многочисленные вулканы и целые поля лавы. Увидеть их можно на плоскогорье Декан в Индии и в Армении . Прогибание продолжается на протяжении миллионов лет, потому что процесс идет очень медленно. Образовавшиеся прогибы постепенно заполняются морской водой, в которых происходит активное размножение живых организмов. Отмершие их скелеты и панцири образуют огромные толщи осадочных пород известняков, мергелей и др. Постепенно энергия, с которой происходило столкновение платформ, иссякает, прогибание и встречное движение земной коры прекращается. На втором этапе горообразования происходит медленное поднятие пород, погруженных в мантию, под действием выталкивающей силы. Пласты сминаются и образуются горные хребты и межгорные впадины . С уравновешиванием всех сил процесс горообразования прекращается, и эпоха складчатости заканчивается .

К складчатым горам относятся все высочайшие горы Земли – Гималаи, Гиндукуш, Памир, Кордильеры. Они имеют остроконечные вершины, вытянутые гребни, узкие долины. Обычно складчатые горы состоят из горных цепей, расположенных параллельно и близко одна к другой. Они, как правило, образуют мощные горные хребты, которые могут тянуться на сотни и тысячи километров. Их форма чаще всего бывает дугообразная, например, Альпы, Карпаты, Гималаи . Прямолинейную форму имеют Пиренеи, Главный Кавказский хребет, южная часть Анд.

Тектонические движения, магматизм и осадконакопление. В течение раннего палеозоя земная кора испытала сильные тектонические движения, получившие название каледонской складчатости. Эти движения проявились в геосинклинальных поясах не одновременно и достигли своего максимума в конце силурийского периода. Наиболее широко каледонская складчатость проявилась в Атлантическом поясе, большая северная часть которого превратилась в складчатую область каледонид. Каледонский орогенез сопровождался внедрением различных интрузий.

В тектонических движениях раннего палеозоя наблюдается определенная закономерность: в кембрии и начале ордовика преобладали процессы опускания, а в конце ордовика и в силуре -- процессы воздымания. Эти процессы в первой половине раннего палеозоя вызвали интенсивное осадконакопление в геосинклинальных поясах и на древних платформах, а затем привели к созданию горных цепей каледонид в ряде участков геосинклинальных поясов и к общей регрессии моря с территории древних платформ.

Основными областями осадконакопления были геосинклинальные пояса, где шло накопление очень мощных, многокилометровых вулканогенно-осадочных, терригенных и карбонатных формаций. На древних платформах северного полушария шло образование карбонатных и терригенных осадков. Обширные площади осадконакопления располагались на Сибирской и Китайско-Корейской платформах, а на Восточно-Европейской и Северо-Американской осадконакопление происходило на ограниченных участках. Гондвана была преимущественно областью размыва, и морское осадконакопление происходило на незначительных краевых участках.

Физико-географические условия

Согласно теории тектоники литосферных плит положение и очертания материков и океанов в палеозое отличались от современного. К началу эры и в течение всего кембрия древние платформы (Южно-Американская, Африканская, Аравийская, Австралийская, Антарктическая, Индостанская), повернутые на 180°, были объединены в единый суперконтинент, называемый Гондваной. Этот суперконтинент располагался главным образом в южном полушарии, от южного полюса до экватора, и занимал общую площадь более 100 миллионов кмІ. В Гондване находились разнообразные возвышенные и низменные равнины и горные массивы. Море периодически вторгалось лишь в окраинные части суперконтинента. Остальные меньшие по размерам материки находились в основном в экваториальной зоне: Северо-Американский, Восточно-Европейский и Сибирский.

Там же находились микроконтиненты:

Среднеевропейский, Казахстанский и другие. В окраинных морях располагались многочисленные острова, окаймлённые низменными побережьями с большим числом лагун и дельт рек. Между Гондваной и другими материками был океан, в центральной части которого находились срединно-океанические хребты. В кембрии существовали две наиболее крупные плиты: целиком океаническая Прото-Кула и преимущественно материковая Гондванская плита.

В ордовике Гондвана двигаясь на юг, вышла в район Южного географического полюса (сейчас это северо-западная часть Африки). Происходило поддвигание океанической литосферной плиты Прото-Фараллон (и вероятно Прото-Тихоокеанской плиты) под северную окраину Гондванской плиты. Началось сокращение Прото-Атлантической впадины, расположенной между Балтийским щитом, с одной стороны, и единым Канадо-Грендландским щитом -- с другой стороны, а также сокращение океанического пространства. В течение всего ордовика происходит сокращение океанических пространств и закрытие краевых морей между материковыми фрагментами: Сибирским, Прото-Казахстанским и Китайским. В палеозое (вплоть до силура--начала девона) продолжалась Каледонская складчатость. Типичные каледониды сохранились на Британских островах, Скандинавии, Северной и Восточной Гренландии, в Центральном Казахстане и Северном Тянь-Шане, в Юго-Восточном Китае, в Восточной Австралии, в Кордильерах, Южной Америке, Северных Аппалачах, Срединном Тянь-Шане и других областях. В результате рельеф земной поверхности в конце силурийского периода стал возвышенным и контрастным, особенно на континентах, расположенных в северном полушарии. В раннем девоне происходит закрытие Прото-Атлантической впадины и образования Еврамериканского материка, в результате столкновения Про-Европейского материка с Про-Северо-Американским в районе нынешней Скандинавии и Западной Гренландии. В девоне смещение Гондваны продолжается, в результате Южный полюс оказывается в южной области современной Африки, а возможно и нынешней Южной Америки. В этот период сформировалась впадина океана Тетис между Гондваной и материками вдоль экваториальной зоны, образовались три целиком океанические плиты: Кула, Фараллон и Тихоокеанская (которая погружалась под Австрало-Антарктическую окраину Гондваны).

В среднем карбоне произошло столкновение Гондваны и Евроамерики. Западный край нынешнего Северо-Американского материка столкнулся с северо-восточной окраиной Южно-Американского, а северо-западный край Африки -- с южным краем нынешней Центральной и Восточной Европы. В результате образовался новый суперконтинент Пангея. В позднем карбоне -- ранней перми произошло столкновение Евроамериканского материака с Сибирским, а Сибирского материка с Казахстанским континентом. В конце девона началась грандиозная эпоха Герцинской складчатости с наиболее интенсивным проявлением при формировании горных систем Альп в Европе, сопровождавшихся интенсивной магматической деятельностью. В местах столкновения платформ возникли горные системы (с высотой до 2000--3000 м), некоторые из них просуществовали и до нашего времени, к примеру Урал илиАппалачи. Вне Пангеи находилась только Китайская глыба. К концу Палеозоя в персмком периоде Пангея протягивалась от южного полюса до Северного. Южный географический полюс в это время находился в пределах современной Восточной Антарктиды. Входивший в состав Пангеи Сибирский материк, являвшийся северной окраиной, приближался к Северному географическому полюсу, не доходя до него 10--15° по широте. Северный полюс в течение всего палеозоя находился в океане. В это же время образовался единый океанический бассейн с главной Прото-Тихоокеанской впадиной и единая с ней впадина океана Тетис.

Полезные ископаемые

Раннепалеозойские отложения относительно бедны полезными ископаемыми. В отличие от докембрия в раннем палеозое формировались первые промышленные месторождения горючих полезных ископаемых, фосфоритов, каменных солей. Месторождения металлических полезных ископаемых имеются, но их удельный вес в мировых запасах и добыче минерального сырья невелик.

Горючие полезные ископаемые -- нефть. и горючий газ -- имеют небольшое промышленное значение, их месторождения известны в России на Сибирской платформе, в США, Канаде и на севере Африки. Гораздо большее значение имеют месторождения горючих сланцев Эстонии ордовикского возраста.

Месторождения металлических полезных ископаемых подразделяются на две группы. К первой группе относятся богатые месторождения железных и марганцевых руд осадочного происхождения. Огромные запасы осадочных железных руд имеются на востоке Северной Америки (Аппалачские горы, Ньюфаундленд). Ко второй группе относятся месторождения, связанные с магматическими породами, -- железа, марганца, меди, хрома, никеля, платины и золота (Алтае-Саянская область, Урал, Скандинавские горы).

Из неметаллических полезных ископаемых промышленное значение имеют месторождения каменной соли на юге Сибирской платформы возле Иркутска, в США, в Пакистане. Крупные месторождения фосфоритов сосредоточены в США и Китае. Богатые месторождения фосфоритов известны на хребте Каратау в Средней Азии (кембрий), в Прибалтике (ордовик), в Восточном Саяне и Кузнецком Алатау. Месторождения асбеста и талька, связанные с ультраосновными интрузиями, известны на Урале.

ПРИМЕР ЗАДАНИЯ С ПРИМЕНЕНИЕМ КОСМИЧЕСКИХ СНИМКОВ

(По учебнику "ГЕОГРАФИЯ МАТЕРИКОВ И ОКЕАНОВ" под ред. И.В. Душиной Раздел III. Океаны и материки. Тема 8. Евразия. Урок № 46.)

Цели и задачи: Сформировать представление о рельефе и полезных ископаемых материка, установить взаимосвязь между тектоническими структурами и формами рельефа, закрепить навык сопоставления физической и тектонической карт. С помощью космических снимков сформировать представление о молодых складчатых горах Альпийско-Тихоокеанского пояса.

Оборудование: Физическая карта Евразии, карта строения земной коры, Атлас. М.: Дрофа, 2007 (7 класс), мультимедиа-проектор, экран, компьютер
ЦОР:Альпийско-Гималайский пояс .
Ход работы:
1. Учащиеся анализируют карту строения земной коры Евразии и отвечают на вопросы учителя:
— На каких литосферных плитах лежит Евразия?
— С какими плитами сталкивается Евроазиатская литосферная плита?
— Какие сейсмические пояса расположены на границах литосферных плит?
— Какие платформы есть на территории Евразии? Какими формами рельефа они представлены?
— Какие складчатые области разного возраста есть в Евразии?
— Какие горы относятся к древней складчатости, какие — к средней, а какие к новой, кайнозойской?

2. Учащиеся находят на физической карте молодые горы Альпийско-Гималайского горного пояса, перечисляют их с запада на восток, называют среднюю высоту и максимальные отметки высот. Затем им предлагается просмотреть ЦОР Альпийско-Гималайский пояс .
3. Вопросы учителя:
— Какие признаки увиденных вами гор свидетельствуют о том, что это молодые складчатые горы? (Наличие чётко выраженных в рельефе хребтов, острых пиков, сильно расчленённых рельефом, горного оледенения, следов землетрясений (Сарезское запрудное озеро) и вулканизма.
— Почему молодые горы имеют складчатое строение и, как правило, они более высокие, чем древние горы? (Молодые горы образуются на границах столкновений литосферных плит, где земная кора сминается в складки, а так как они подвергаются выветриванию относительно недолго, то они высокие и имеют острые вершины, пики, хребты, простирающиеся вдоль складок.)
4. На основе анализа карт учащимся предлагается заполнить таблицу "Рельеф и полезные ископаемые Евразии"

Тектоническая структура Соответствующая форма рельефа Полезные ископаемые
Древняя складчатость Уральские, Скандинавские горы Железная и медная руда
Средняя складчатость Верхоянский хребет олово
Новая складчатость Кавказ, Памир,
Апеннины, Пиренеи,
Альпы, Гималаи
Полиметаллические руды
Платформы:
1. Восточно-Европейская
2. Сибирская
3.Западно-Сибирская плита
4. Китайская
5.Индийская
6. Африкано-Аравийская
Восточно-Европейская равнина,
Прикаспийская низменность,
Восточно-сибирское плоскогорье,
Западно-Сибирская равнина,
Великая Китайская равнина,
Декан, Индо-Гангская низменность,
Аравийское плоскогорье
Бурый и каменный уголь,
нефть,
газ,
поваренная соль.

Домашнее задание : на контурной карте Евразии подписать все формы рельефа и значками обозначить полезные ископаемые.

Тектонические структуры — Это большие участки земной коры, ограниченные глубинными разломами. Строение и движения земной коры изучает геологическая наука тектоника. Геологические тела, типичные формы залегания горных пород различного возраста и состава, повторяющиеся в разных регионах и созданные тектоническими силами. Тектонические структуры изучаются геологическим картографированием, геофизическими методами, особенно сейсморазведкой, а также бурением. Тектонические структуры как структурные формы изучаются и классифицируются структурной геологией , исследующей преимущественно малые и средние формы (ок. 10 км в поперечнике), и тектоникой , изучающей крупные (св. 100 км) формы. Первые называют тектоническими нарушениями, или дислокациями, разных типов (складчатые, инъективные и разрывные). Ко вторым относятся антиклинории и синклинории в пределах складчатых областей, антеклизы, синеклизы и авлакогены в пределах щитов, плит, перикратонных опусканий на платформах; складчатые геосинклинальные пояса, орогены, платформы, континенты, океаны, подводные активные и пассивные окраины континентов, срединно-океанические хребты, океанические плиты, а также глубинные разломы континентов, рифты, трансформные разломы и шарьяжи. Эти наиболее крупные тектонические структуры могут охватывать земную кору и литосферу и получили название глубинных тектонических структур.

Крупнейшие тектонические структуры по их значимости можно расположить в следующем порядке.

l Суперглобальные структуры – имеют площадь в десятки миллионов квадратных километров и протяженность в тысячи километров. Развитие их проходит на протяжении всего геологического этапа истории планеты.

l Глобальные структуры – занимают площади до десяти и более миллионов квадратных километров, протягиваются на несколько тысяч километров. Время их жизни совпадает с предыдущими структурами.

l Субглобальные структуры – охватывают несколько миллионов километров квадратных, длина их достигает тысячи километров и более. Время развития превышает один миллиард лет.

Помимо названных, выделяются также структуры более мелких порядков.

В первую очередь, на основании единства движения, а также сравнительной монолитности, необходимо выделить такие суперглобальные структуры, как литосферные плиты . Принято выделять семь крупнейших плит и от одиннадцати до тринадцати более мелких. Крупнейшими плитами являются Евразийская, Африканская, Северо-Американская, Южно-Американская, Индо-Австралийская, Антарктическая, Тихоокеанская. В числе мелких плит можно назвать Филиппинскую, Аравийскую, Кокос, Наска, Карибскую и др. Во-вторых, важнейшими являются разломные структуры,разделяющие собою литосферные плиты.

Среди разломных структур, в первую очередь, выделяются рифты, которые подразделяются на срединно-океанические и континентальные. Срединно-океанические рифты образуют собою глобальную систему, протяженностью более 64 000 км. В качестве примеров континентальных рифтов можно привести величайший на планете Восточно-Африканский, а также Байкальский. Другой разновидностью разломных структур являются трансформные разломы, перпендикулярно рассекающие рифты. По линиям трансформных разломов происходит горизонтальное проскальзывание (сдвиг) прилегающих к ним частей литосферных плит.

В пределах участков литосферных плит с материковым строением земной коры, выделяются такие глобальные структуры, как платформы и горно-складчатые области.

Тектонические платформы

Платформы – это жесткие, малоподвижные блоки земной коры, прошедшие длительный этап геологического развития, и имеющие трех ярусное строение. Платформы состоят из кристаллического фундамента (базальтовый и гранито-гнейсовый слои) и осадочного чехла. Кристаллический фундамент сложен смятыми в складки слоями метаморфических пород. Вся эта сложно дислоцированная толща во многих местах прорвана интрузиями (преимущественно кислого и среднего состава). По возрасту формирования кристаллического фундамента платформы подразделяются на древние (докембрийские) и молодые (палеозойские и, реже, раннемезозойские). Древние платформы являются ядрами всех материков и занимают их центральную часть. Молодые платформы размещаются на периферии древних или между древними платформами. В составе осадочного чехла господствуют недислоцированные слои шельфовых, лагунных, реже континентальных осадков.

В пределах древних платформ, по особенностям геологического строениявыделяют такие субглобальные структуры, как щиты и плиты.

Щит – участок платформы, где кристаллический фундамент выходит на поверхность (т.е. где нет осадочного слоя). Щиты возникают при тектоническом воздымании территории, в результате которого господствуют процессы денудации. В рельефе щиты обычно представлены плоскогорьями (Бразильский щит), а реже возвышенностями (Донецкий щит).

Плиты – это платформы (или их участки) с мощным осадочным слоем. Образование плит связано с тектоническим погружением платформы, и, соответственно, с морской трансгрессией. На поверхности платформ плитным территориям чаще всего соответствуют низменности, а также возвышенности. Литосферные плиты посмтоянно находятся в движении (подробнее о движении плитсм. статью).

Более мелкие структурные подразделения в пределах осадочного чехла древних платформ представлены суперрегиональными структурами, площадь которых составляет сотни тысяч квадратных километров, а протяженность – до нескольких сот километров. Их развитие происходит во время накопления осадочного чехла и измеряется сотнями миллионов лет. Суперрегиональные структуры подразделяются на региональные, а последние, в свою очередь, на структуры еще более мелких порядков. Среди суперрегиональных структур необходимо назвать антеклизы, синеклизы и моноклинали.

Антеклизы – крупнейшие положительные структуры плитных участков с выпуклой формой поверхности фундамента и осадочным чехлом небольшой мощности.

Взаимосвязь основных форм рельефа с тектоническими структурами (стр. 1 из 2)

Антеклизы формируются в режиме тектонического воздымания территории, поэтому на них могут отсутствовать многие горизонты, представленные на соседних отрицательных структурах. В пределах антеклиз можно выделить такие региональные структуры, как массивы и выступы.

Массивы являются высшими частями антеклиз, в которых фундамент либо выходит на поверхность, либо перекрывается осадочными породами четвертичного возраста.

Выступы – это части массивов, антеклиз, представляющие собой изометричные или вытянутые поднятия фундамента диаметром до 100 км. Иногда выделяют погребенные выступы, над которыми осадочный чехол хотя и имеется, но представлен сильно сокращенным разрезом (по сравнению с окружающими отрицательными структурами).

Синеклизы – крупнейшие отрицательные суперрегиональные структуры плитных участков с вогнутой поверхностью фундамента, плоским дном и очень пологими (доли градуса) углами падения слоев на склонах. Синеклизы возникают в режиме тектонического погружения территории, в силу чего характеризуются повышенной мощностью осадочного чехла. Региональными структурами, подобными синеклизам, являются имеющие изометричную форму впадины и линейно вытянутые прогибы. Моноклинали – тектонические структуры с односторонним наклоном слоев, угол падения которых редко превышает 1°. В зависимости от ранга положительных и отрицательных структур, между которыми располагается моноклиналь, ее ранг также может быть разным. Среди региональных структур осадочного чехла необходимо упомянуть горсты, грабены (см. «Дизъюнктивные дислокации») и седловины. Седловины – региональные образования, занимающие промежуточное положение по относительной высоте своей поверхности. Седловины лежат выше окружающих их отрицательных структур, но ниже окружающих положительных.

Горно-складчатые области , характеризующиеся резким возрастанием мощности земной коры, формируются при конвергенции литосферных плит. Большинству горно-складчатых областей, особенно молодых, характерна повышенная сейсмичность.

Основополагающим принципом их разделения является возраст складчатости, устанавливаемый по возрасту самых молодых смятых в складки слоев. Соответственно, горные массивы подразделяются на байкальские, каледонские, герцинские, киммерийские и альпийские. Такое разделение является достаточно условным, поскольку большинством ученых признается непрерывность складкообразования во времени. Другими словами, в истории Земли не было обще планетарных этапов тектонической активности и покоя. Горообразование происходит непрерывно, проявляясь то в одном, то в другом месте. Следовательно, выделение байкальской и других складчатостей определяет лишь временные рамки начала и завершения крупных исторических этапов тектонического развития планеты.

По тектоническому строению ныне существующие горно-складчатые области можно разделить на структуры складчатые и складчато-глыбовые.

Складчатые массивы представлены в молодых (альпийского и, отчасти, киммерийского этапов складкообразования) горно-складчатых поясах.

Складчато-глыбовые (омоложенные, возрожденные) сооружения формируются при оживлении вертикальных и горизонтальных тектонических подвижек в пределах ранее образованных и, часто, уже разрушенных складчатых систем. Поэтому складчато-глыбовое строение особенно характерно регионам палеозойских и более древних этапов складчатости. Рельеф складчатых массивов в целом соответствует конфигурации изгибов слоев горных пород, что далеко не всегда проявляется в складчато-глыбовых образованиях. Так, в молодых складчатых горах структурам антиклинальных складок (или антиклинориев) соответствуют горные хребты, а структурам синклинальных складок (или синклинориев) – межгорные долины (прогибы).

Внутри горно-складчатых областей и на их периферии выделяются соответственно межгорные и предгорные (краевые, передовые) прогибы и впадины. На поверхности этих структур залегают грубообломочные продукты разрушения гор – молассы. Образование предгорных прогибов происходит в результате субдукции литосферных плит, то есть, по сути, предгорные прогибы являются реликтами глубоководных желобов.

Каждый из крупных природных комплексов России представляет собой единую геоструктурную область больших размеров (платформу или складчатую систему определенного геологического возраста), соответствующим образом выраженную в рельефе — низменностями или высокими равнинами, складчатыми, глыбовыми или складчато-глыбовыми горами. Все они имеют определенные черты климата и соответствующие им особенности почвенно-растительного покрова.

Горы складчатых областей

Эра Эпоха складчатости Основные формы рельефа Тектоническое строение Относительный возраст
Протерозойская байкальская Енисейский кряж Восточный Саян Яблоновый хребет глыбовое, складчато-глыбовое Возрожденные (в неоген-четвертичное время)
Палеозойская каледонская Западный Саян
герцинская Уральские горы Алтай
Мезозойская мезозойская горы Бырранга Сихотэ-Алинь горы Северо-Восточной Сибири Верхоянский хребет хребет Черского Колымское нагорье Чукотское нагорье и др.
Кайнозойская альпийская и тихоокеанская Кавказские горы горы о. Сахалин горы Камчатки (Срединный хребет) горы Курильских о-вов складчатое Молодые (возникшие в неоген-четвертичное время)

Платформенные равнины

Возраст фундамента Тектонические структуры Основные формы рельефа
Докембрийский Русская платформа Балтийский щит Восточно-Европейская (Русская) равнина низменные и возвышенные равнины Карелии и Кольского п-ова
горы Кольского п-ова
плита Русской платформы вся остальная территория
Восточно-Европейской равнины
Сибирская платформа Анабарский щит Средне-Сибирское плоскогорье Анабарское плато
Алданский щит Алданское нагорье
Становой хребет
плита Сибирской платформы вся остальная территория
Средне-Сибирского плоскогорья
Палеозойский (каледонская и герцинская эпохи складчатости) Западно-Сибирская плита Западно-Сибирская равнина равнины Северного Кавказа
Скифская плита Прикаспийская низменность
Полезные ископаемые Орловской области
По данным геологоразведочных исследований Орловская область располагает различными видами полезных ископаемых: железными рудами, глинами тугоплавкими и легкоплавкими, трепелами, минеральными красками, цементным сырьем, строительными камнями, мелом, песками для строительных работ и производства силикатных изделий, глинами и суглинками для производства минеральной ваты. Многие из них в настоящее время промышленным способом не разрабатываются и являются резервными. Известняки, пески и глины имеют разнообразное применение в производстве строительных материалов. Месторождения известняков и доломитов (карбонат кальция) находятся практически во всех районах области. Запасы белого чистого мела, а также белой глины (каолина) располагаются в Должанском районе. Каолин может использоваться в качестве исходного сырья для производства фарфорофаянсовых изделий и электротехнических изделий (как изолятор). Тугоплавкие глины Малоархангельского района применяются для производства посуды, облицовочной плитки, черепицы, канализационных труб и т.д. Кроме отмеченных полезных ископаемых в области имеются запасы бурого угля в Болховском районе (глубина залегания 35-40 метров, мощность пласта от 0,3 до 3,2 метра), фосфоритов в Дмитровском, Болховском и Глазуновском районах (толщина пласта до 0,4 метра, содержание фосфорного ангидрида Р2О5 до 17%), а также торфа, наиболее крупные месторождения которых находятся в Хотынецком и Шаблыкинском районах. В недрах области содержатся: известняки, доломиты, каолин (сырье для производства фарфорофаянсовых изделий и электротехнических изделий), фосфориты, трепелы (запас – 57 млн. куб. м), торф.

Известняки, пески и глины имеют разнообразное применение в производстве строительных материалов. Месторождения известняков и доломитов (карбонат кальция) находятся практически во всех районах области. Используются для производства обычного бетона марок «100»-«400», для строительства автодорог местного значения. Пески в основном пригодны в качестве мелкого заполнителя для обычного бетона марок «150» и ниже. Тугоплавкие глины Малоархангельского района применяются для производства посуды, облицовочной плитки, черепицы, канализационных труб и т.д.

Суммарные запасы Бутырского месторождения минеральных красок составляют 93 тысячи тонн. Месторождение представлено глинистыми охрами желтого и коричневого цвета. Средняя мощность полезной толщи – 0,83 м, средняя мощность – вскрыши 0,53 м. Охры пригодны для производства:

— глинисто-известковых фасад-красок – желтых, бежевых и коричневых колеров;

— клеевых красок для внутренней отделки зданий;

— масляных густотертых красок красно-коричневых колеров.

Месторождение не эксплуатируется, имеются перспективы увеличения запасов месторождения.

На территории Дмитровского, Троснянского, Глазуновского и Малоархангельского районов детально изучено месторождение фосфоритов, пригодных для производства фосфоритной муки.

В последние годы орловскими геологами выявлено Хотынецкое месторождение цеолитсодержащих трепелов. Это единственное месторождение в Европейской части России представляет собой совершенно новый, ценнейший вид горнохимического сырья с широким спектром использования, большим спросом на мировом рынке и резким ростом добычи. Запасы месторождения по трем изученным участкам: Образцовскому, Богородицкому, Воротынцевскому составляют 56 533 тысяч кубических метров.

В Орловской области расположен "хвост" пласта Курской магнитной аномалии, однако руда в нем труднодобываема и с небольшим содержанием железа (30-32%, по оценкам специалистов Воронежского госуниверситета). В частности, в Новоялтинском месторождении, по данным геологов, 117,6 млн т разведанных запасов. Руда в Дмитровском районе залегает на глубине 180-260 метров, мощность пласта составляет от 2.5 до 19 метров, содержание железа в среднем около 58%. Месторождение имеет промышленное значение, но в настоящее время не разрабатывается. Запасы бурых железняков в Верховском районе по геологическому строению и содержанию железа близкие к Липецким рудам: глубина залегания от 8 до 40 метров, мощность пласта от 0,5 до 7 метров, содержание железа около 42%.

Дата публикования: 2015-02-03; Прочитано: 823 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.003 с)…

Общие черты рельефа Русской равнины предопределены тектоникой, принадлежностью равнины к древней докембрийской платформе, с давнего времени не испытывавшей процессов горообразования. Поэтому Русская равнина лишена высоких горных хребтов, на громадных пространствах она характеризуется небольшим колебанием высот. Средняя абсолютная высота ее около 170 м.

Несмотря на общий равнинный характер поверхности, Русскую равнину нельзя назвать однообразной по рельефу. На ее территории возвышенности чередуются с низменностями.

Пример задания с применением космических снимков на уроке "Рельеф и полезные ископаемые Евразии"

Среднерусская, Валдайская, Приволжская, Волыно-Подольская и другие возвышенности достигают в высших точках 300-400 м над уровнем океана. Низменности - Причерноморская, Днепровская, Окско-Донская, Прикаспийская, Печорская и т. д. - не превышают 100-200 м. Из них наиболее опущена Прикаспийская низменность; южная половина ее имеет абсолютные отметки ниже уровня мирового океана.

Сложная орография Русской равнины находится в связи тектоническими особенностями платформы - неоднородным характером ее структуры, неодинаковым проявлением новейших тектонических движений. Как оказывается при ближайшем рассмотрении, сама платформа состоит из разнородных элементов: щитов, антеклиз, синеклиз и других более мелких структур.

Из щитов на Русской платформе известно два: Балтийский и Украинский. К Балтийскому Щиту относятся Карелия и Кольский полуостров; за пределами СССР он продолжается на территории Финляндии и Швеции. Кристаллические породы архея и протерозоя выходят здесь повсюду на поверхность, если не считать тонкого и не сплошного покрова четвертичных наносов. Украинский щит тянется от берегов Азовского моря на Приднепровскую и Волыно-Подольскую возвышенности и южное Полесье. В отличие от Балтийского щита Украинский прикрыт третичными отложениями и слагающие его граниты и гнейсы выходят на поверхность не везде, а главным образом вблизи речных долин.

Между двумя щитами - Балтийским и Украинским - кристаллический фундамент залегает на небольшой глубине, обычно менее 1000 м, а в Белоруссии не глубже 500 м (Белорусская антеклиза).

Восточнее Украинского щита, за глубоким прогибом Украинской синеклизы, расположена Воронежская антеклиза, где кристаллические породы находятся на глубине 100-200 м от поверхности. В долине Дона южнее города Павловска граниты и гнейсы Воронежской антеклизы в нескольких местах выходя на дневную поверхность.

От Воронежской антеклизы через Среднее Поволжье в сторону Урала проходит полоса относительно неглубокого (менее 2000 м) залегания кристаллических пород - Волго-Уральскай антеклиза. К северу от нее фундамент платформы испытывает погружение, образуя обширную Московскую синеклизу, осевая часть которой хорошо прослеживается по распространению мезозойских отложений в районе Северных Увалов. К югу от Волго-Уральской антеклизы кристаллический фундамент резко и глубоко опускается в сторону Прикаспийской синеклизы.

Прикаспийская синеклиза одна из самых глубоких на Русской платформе. Докембрийский фундамент предположительно залегает здесь на глубине до 10 км и более. Новоузенская опорная скважина на глубине 2986 м вскрыла только нижнюю часть юры (Бакиров, 1954).

Как показало опорное бурение, погребенный кристаллический фундамент Русской платформы имеет неровный, горный рельеф, с колебаниями высот до 1500-2000 м на расстоянии 100-150 км. В качестве иллюстрации можно привести следующий пример: в Жигулевско-Пугачевском выступе фундамента, на западе Самарской Луки кристаллические породы имеют отметку 1430-1600 м ниже уровня моря, а в Саратовской впадине (Елшанка) поверхность их опускается до -2718 м, а в Заволжье, Сокско-Кинельской впадине, еще ниже - 2900 м: (Притула, 1955). Такие резкие колебания поверхности фундамента объясняются тектоническими нарушениями, а не эрозионным размывом.

Осадочные породы, покрывающие кристаллический фундамент платформы, имеют спокойное, близкое к горизонтальному залегание. Однако в ряде мест они собраны в пологие валы, куполовидные поднятия, флексуры, а кое-где наблюдаются и более резкие тектонические нарушения осадочного покрова в виде сбросов. Лучше всего они выражены по окраинам платформы, и особенно на юго-востоке ее - на Приволжской возвышенности и в Заволжье.

Исключительно интересна тектоника Донецкого кряжа. Хотя он и расположен на равнине, но представляет собой складчатое горное сооружение палеозойского возраста, в настоящее время сильно пенепленизированное. Недавно на территории Предкавказья и к северу от него был обнаружен складчатый палеозойский комплекс, сложенный сильно метаморфизованнымй породами. В связи с этим Донецкий кряж принято рассматривать в качестве северной окраины этой палеозойской складчатой зоны;

В последнее время среди осадочного покрова Русской платформы найдены вулканические эффузивные породы. Это говорит о том, что Русская платформа испытывала проявления вулканизма уже в послепротерозойское время. Особенно энергично вулканизм протекал в девоне, в эпоху каледонской складчатости. Сопоставление тектонической и гипсометрической карт Русской равнины приводит к заключению о тектонической обусловленности ее орографии. Почти все крупные возвышенности и низменности Русской равнины имеют не эрозионное или ледниково-аккумулятивное, а тектоническое происхождение. При этом значительная часть их унаследована от структуры кристаллического фундамента: выступам соответствуют возвышенности, впадинам - низменности. Так, с Балтийским щитом совпадают значительные поднятия Карелии и Кольского полуострова, с Украинским щитом связаны Приазовская и Приднепровская возвышенности, центру Воронежской антеклизы отвечает Среднерусская возвышенность, на месте Причерноморской впадины, Украинской и Прикаспийской синеклиз расположены Причерноморская, Приднепровская и Прикаспийская низменности и т. д. Однако в центральных частях Русской равнины такое соответствие современных форм рельефа древним структурам не всегда удается установить, а в ряде случаев наблюдается резкое несоответствие современного рельефа с древними структурами. Северные Увалы, например, расположены на месте наиболее погруженной, осевой части Московской синеклизы, значительная часть Приволжской возвышенности представляет Ульяновско-Саратовскую синеклизу, Окско-Донская низменность оформилась на восточном склоне Воронежской антеклизы.

Несоответствие современного рельефа древним структурам в большинстве случаев установилось сравнительно недавно и явственно наметилось только с середины третичного периода. В центральной и северо-западной частях равнины тектоническая обусловленность современной орографии выражена менее ясно. В формировании крупных черт рельефа здесь усиливается роль эрозионного размыва и денудации. Силурийский глинт в Прибалтике и Ленинградской области, равно как и карбоновый глинт - западный обрыв Валдайской возвышенности, можно рассматривать в качестве крутых уступов огромных куэст, выработанных в палеозойских породах различной плотности, обнаруживающих слабое падение в юго-юго-восточном направлении. Как и в других местах СССР, современный рельеф Русской равнины во многом обусловлен новейшей тектоникой. На Русской равнине она проявляется в форме эпейрогенических движений небольшого размаха.

Б. Л. Личков (1931, 1934) эпейрогенические движения на Русской равнине связывает с ледниковыми нагрузками, возникавшими на севере. В связи с этим он говорит о наличии зональности в эпейрогенических движениях: во время оледенения север под влиянием ледниковой нагрузки испытывал опускание, внеледниковый юг - компенсационное поднятие; в послеледниковое время картина изменилась: север, лишившись ледниковой нагрузки, стал подниматься, юг, наоборот, опускаться.

Г. Ф. Мирчинк и Н. И. Николаев показали несостоятельность взглядов Б. Л. Личкова. Эпейрогенические движения в четвертичный период, как и в прошлом, протекают в зависимости от геологической структуры. Рядом расположенные участки, отличающиеся один от другого в структурном отношении, имеют и неодинаковый характер эпейрогенических движений. Как правило в новейшее время (неоген - четвертичный период) возвышенности сохраняли существовавшую и ранее тенденцию к поднятию, низменности - к опусканию. Признаки четвертичного опускания установлены для Причерноморской, Днепровской, Окско-Донской, Прикаспийской и других низменностей, следы молодых поднятий отмечены на Волыно-Подольской, Среднерусской и Приволжской возвышенностях, в Донецком кряже, Высоком Заволжье. Наибольшего размаха неотектонические движения достигли в Прикарпатье, Предуралье и на северо-западе Русской равнины, в области Балтийского щита. Здесь амплитуда движений составляет не менее 200-300 м. Внутренние районы Карелии и Кольского полуострова только на протяжении послеледникового времени испытали поднятие более чем на 150 м.

Возвышенности Русской равнины с их давно уже проявляющейся тенденцией к поднятию представляют области сноса, энергичного течения эрозионных процессов. На геологических картах они обрисовываются выходом на поверхность более древних коренных пород, чем породы, слагающие рядом расположенные низменности. Наоборот, многие низменности, обладающие тенденцией к опусканию, являются областями накопления рыхлых верхнетретичных и четвертичных осадков, районами ослабленных эрозионных процессов.

Предыдущая глава::: К содержанию::: Следующая глава

Вся история существования земной коры условно поделена на несколько геологических складчатостей. В истории Земли выделяют: архейскую (докембрийскую) складчатость, байкальскую, каледонскую, герцинскую, мезозойскую и альпийскую складчатости. Последняя из них — альпийская, не завершена и продолжается сейчас.

Архейская складчатость — наиболее древняя, она закончилась около 1,6 миллиарда лет назад. На схемах обозначается обычно розовым цветом. В Архейскую складчатость сформировались все платформы — древние ядра материков, их самые стабильные (как правило самые ровные) участки. За более чем миллиард лет участки коры, образовавшиеся в Архее, полностью выровнялись внешними силами Земли, их поверхность превратилась в равнины, а все геологические процессы вулканизма и горообразования давно прекратились.
Байкальская складчатость — длилась от 1200 до 500 млн. лет назад. Названа в честь озера Байкал, так как участок Сибири, где располагается озеро сформировался именно в этот период. К байкальской складчатости также относится Енисейский кряж, Патомское нагорье, хребет Хамар-Дабан, часть территории Аравийского полуострова и Бразильского плоскогорья.
Каледонская складчатость — 500-400 млн. лет назад. Названа в честь Каледонии на острове Великобритания, где и была впервые открыта. В эту складчатость сформировалась Великобритания, Ирландия, Скандинавия, Ньюфаундленд, Южный Китай, Восток Австралии.
Герцинская складчатость — 400-230 млн. лет назад.

Тест «Тектонические структуры, геологическое строение, рельеф Луганщины» для учащихся 8 класса

В этот период сформировалась значительная часть Европы, Урал, Аппалачи, Большой Водораздельный хребет, Капские горы
Мезозойская складчатость — 160-65 млн. лет назад. Соотносится с Мезозойской эрой, когда по Земле бродили динозавры. В этот период сформировались Кордильеры, Большая часть Дальнего Востока России
Альпийская складчатость — началась 65 млн. лет назад. В альпийскую складчатость образовались самые молодые, а потому самые неспокойные участки земной коры. В этих местах активно идут процессы вулканизма, часто случаются землетрясения, продолжают образовываться горы. По большей части они расположены в районах столкновения литосферных плит. Это Алеутские острова, Карибские острова, Анды, Антарктический п-ов, Средиземное море, Малая Азия, Кавказ, Юго-Западная Азия, Гималаи, Большие Зондские острова, Филиппины, Япония, Камчатка и Курилы, Новая Гвинея и Новая Зеландия.

< Вернуться в раздел "Литосфера"

< На главную страницу

Новостной информер: (предоставлено newsfiber.com)

Статья на тему "Рельеф: тектоническая основа".

Закономерности распространения форм рельефа. Современный рельеф Украине сформировался в результате взаимодействия внутренних и внешних сил, которые действовали кайнозойской эры. Происхождения и закономерности распространение различных форм и типов рельефа изучает отрасль физической географии — геоморфология .

Сопоставив тектоническую и физическую карты Украины, можно убедиться, что общий план строения рельефа Украина — расположение, направление простирания и высота низменностей, возвышенностей и гор — обусловлены тектонической строением. Большинство крупных форм рельефа Украина (Волынская, Подольская и Приднепровская возвышенности, Донецкий кряж, Приднепровская низменность и Украинские Карпаты ) простираются с северо-запада на юго-восток в соответствии с направлением залегания тектонических структур. Большую роль играет древнейшая структура — Украинский кристаллический щит , Который и задал основное направление другим структурам.

В основном крупные формы рельефа Украины имеют прямая связь с тектоническими структурами: в пределах щита и складчатых сооружений размещаются возвышенности и горы, а тектоническим впадинам соответствуют низменности.

Одновременно в западной части Украины связь между рельефом и тектоническими структурами обращен: Волыно-Подольскойплите, Галицко-Волынской впадине и Предкарпатскомпрогиба соответствуют несогласованные с ними формы рельефа — возвышенности и горбогирну пряди. Это связано с так называемыми неотектонических движениями — Поднятиями земной коры, происходившие там в кайнозое. Тогда претерпела поднятие почти вся территория Украины, кроме береговой полосы Причерноморья . Всего поднялись Карпаты и Предкарпатье , Крымские горы, Донецкая и Подольская возвышенности . Это привело активное "врезки" в земную поверхность рек, которые образовывали глубокие с отвесными склонами долины, а на юге Подольской возвышенности — каньоны.

Основные типы рельефа. Влияние на земную поверхность внутренних и внешних сил вызвал распространение рельефа различных типов. Свнутренними процессами связаны тектонический и вулканический типы, а с внешними — гравитационный, водноерозийний и водноакумулятивний, карстовый, ледниковый и водноледникового, Эоловый, береговой, антропогенный.

Тектонические формы рельефа образовавшихся в результате тектонических движений земной коры. Таковы горные хребты и межгорные долины в Украинский Карпатах (Чередование складок, возвращенных вверх и вниз), складчато-глыбовые Крымские горы , Словечанско-Овручскийкряж на месте горста (глыбовых поднятие кристаллических пород Украинского щита), Донецкий кряж (приподнятый складка), Приднепровская, Причерноморская и Закарпатская низменности (На месте впадин) и др.

Вулканические формы рельефа является результатом непосредственного деятельности вулканов (Вулканический хребет в Карпатах, Береговское горбогирья в Закарпатье, гора Карадаг в Крыму) или проникновение магмы между слоями осадочных пород (гора Аюдаг в Крыму). Специфическими вулканическими формами являются грязевые вулканы. Их конусыневысокие до 50 м. Несколько десятков таких грязевых вулканчик есть на Керченском полуострове в Крыму.

Удивительная Украины

Грязевые вулканы

Большинство грязевых вулканов Керченского полуострова потухшие. Однако есть и постоянно или периодически действующие. Газы, вырывающиеся из глубин 5 — 7 км по разрывам земной коры, выталкивают на поверхность разреженную глинистую массу с обломками пород, образует небольшие конические холмы или наклонные повышения. Извержение таких вулканчик иногда сопровождается взрывами, местными землетрясениями или самовозгорание газа.

Рис. Грязевой вулкан на Керченском полуострове

Гравитационные формы рельефа вызванные процессами, происходящими под влиянием силы тяжести (гравитации). К ним относятся обвалы и осипища , Которым способствует активное выветривание горных пород. Большие обвалы часто случаются в горах. Они зарождаются на участках скальных обрывов, разбитых густой сетью трещин на блоки. До поры до времени эти блоки монолитные. Толчком к обвалу может стать проникновения в трещины дождевой или талой воды, которая размягчает глинистый слой. Тогда гигантские глыбы и камни летят и скатываются вниз, круша все на своем пути. В горах и на крутых правобережных склонах долин крупных рек часто бывают оползни .

Удивительная Украины

Каменный хаос

На скальных обрывах горы Южная Демерджи, Что в Крыму, неоднократно случались обвалы. Подножие горы вблизи с. Лучистое скрытое хаосом огромных каменных глыб величиной с трехэтажный дом. В 1966 г. глыбы массой 2 — 3 тыс. тонн с грохотом упали с высоты более 100 м. Раскатистый гул мощного обвала был похож на сильный взрыв, и сейсмическая станция в Алуште зарегистрировала вызванные им толчки как землетрясение.

Водно-эрозионные формы рельефа Связанные с разрушительной работой водных постоянных (речных) и временных потоков. Такими формами являются речные долины, каньоны, балки, овраги . Одновременно происходит водная аккумуляция — накопление отложений, вследствие которой возникают водноакумулятивни формы: широкие поймы и террасы в долинах рек, дельты в устьях Дуная и Днепра .

Рекорды Украине

Длинным каньоном в Украине Днестровский, длина которого составляет 250 км. Днестр от устья р Золотая Липа до р.Збруч врезается в породы поверхности, формируя узкую долину глубиной 150 — 180 м.

Карстовые формы образуются в результате растворение водой горных пород. Карстовые пещеры, воронки, колодцы, шахты распространены на Волыни , Подолье , В Крымских горах, Донбассе, — там, где близко к поверхности подходят породы, легко растворяются и размываются водой (мел, гипс, известняк, соли). В среднем Приднестровье на стыке Подольской и Хотинской возвышенности находится почти полсотни значительных подземных пустот, имеющих общую длину разведанных ходов свыше 465 км. Среди них три крупнейших в мире гипсовых пещеры: Оптимистическая (217 км), Озерная (121 км) и Золушка (90 км). Исследователи пещер — спелеологи постоянно разведывают в них новые лабиринты, а также открывают новые пещеры.

Рекорды природы

Крупнейшая в мире пещера в гипсовых породах — Оптимистическая, расположенная в Украину на Подольской возвышенности (Тернопольская область). Ее подземные лабиринты имеют протяженность более 165 км.

Рис. Оптимистическая — самая длинная в мире гипсовая пещера (165 км),

с. Королевка, Борщевский р-н, Тернопольская обл.

Ледниковые формы рельефа Связанные с горным и материковым обледенением. Непосредственным действием ледникасозданыбывшие ледниковые ложа — Казни (Углубление, похожие на большие кресла) и цирки ( чашеобразные углубление). Они случаются в высочайших горных массивах Украинский Карпат . Воднольодовиковиформы является следствием давнего материкового оледенения в прошлые геологические эпохи. С потеплением климата после отступления ледника талые воды образовали озы — Длинные, узкие песчаные валы и ками -Песчаные холмы. Они распространены на Полесской низменности .

Эоловые формы рельефа песчаные холмы и пряди — Возникают в результате деятельности ветра. Они есть на Полесье , в низовье Днепра , На морских косах.

Занимательная география

Олешковские пески

В нижнем течении Днепра на левом берегу большие площади издавна заняты песками. В прошлом на них росли леса (Геродот назвал их Гилея, Что означает Полесья или Олешье). В течение XIII — ХVIII ст. они были полностью уничтожены в результате хозяйственной деятельности человека. Тогда там активно начал развиваться эоловые формы рельефа — движущиеся холмы высотой до 20 м. В ХХ ст. для закрепления сыпучих песков высадили сосновый лес. Однако в жаркое лето 2007 г. лес снова пострадал — на этот раз от многочисленных пожаров.

Береговые формы рельефа формируются на морских побережьях результате разрушительной и творческой работы морских волн и прибоя. Разрушение берега вызывает оползни и обвалы. Берег постепенно отступает, а вследствие морской аккумуляции образуются пляжи , песчаные косы , валы .

Антропогенные (техногенные )формы рельефа — Это неровности земной поверхности, образованные деятельностью человека. Карьеры, терриконы, отвалы возникающие в результате добычи полезных ископаемых, а насыпи, дамбы, валы — В результате прокладка путей сообщения, строительства водохранилищ и т.д.

Рис. Оползни на берегу Черного моря, с. Крыжановка, Коминтерновский р-н

Рис. Сдвигового побережья в Западном Крыму

Изучение рельефа имеет большое значение для жизнедеятельности человека. Эти знания важны для поисков нефтегазоносных площадей, месторождений строительных материалов. Исследование рельефа необходимо для обоснования строительства инженерных сооружений, предотвращения последствий стихийных бедствий, проведения сельскохозяйственных работ, решению экологических проблем. Рельеф, прежде горный, является весомым фактором развития туризма, спорта и курортно-санаторного хозяйства.

Основные тектонические структуры. Тектонические структуры — Это большие участки земной коры, ограниченные глубинными разломами. Строение и движения земной корыизучаетгеологическая наука тектоника .

Как вы уже знаете, крупнейшими тектоническими структурами платформы и подвижные пояса. Платформа — Это относительно устойчивая участок земной коры с довольно плоской поверхностью лежит на месте разрушенных складчатых сооружений. Она имеет двухслойную строение: снизу залегает кристаллический фундамент, сложенный древними твердыми породами, над ним — осадочный чехол, образованный младшими отложениями. На платформе выделяют щиты и плиты. Щит есть приподнятой до земной поверхности участком кристаллического фундамента платформы. осадочный чехол на нем является маломощным и не сплошной. Плита — это участок платформы, где фундамент погружен на глубину и всюду перекрыт осадочным чехлом.

Подвижной пояс — Это удлиненная участок земной коры, в пределах которой длительное время происходили древние и продолжаются современные движения земной коры.

В подвижном поясе различают складчатые сооружения , краевые (предгорные) прогибы .

На территории Украины распространены также такие тектонические структуры, как впадины — глубоко вогнутые участки земной коры, заполненные осадочными и вулканическими толщами. Впадины распространены как на платформах, так и в подвижных поясах, а также в зонах их стыковок.

Границы тектоническихструктуротображен на тектонической карте . На ней также указано складчатости, во время которых они сформировались.

Платформы. Наибольшей тектонической структурой, лежащей в основе территории Украины, есть давняя Восточноевропейская платформа . Ее фундамент составляют докембрийские кристаллические породы (граниты, базальты, гнейсы, кристаллические сланцы, лабрадориты, кварциты). На платформе возвышается Украинский щит . Это одна из древнейших участков земной коры в Европе. Кристаллический фундамент перекрыт здесь незначительной (Несколько десятков метров) толщей осадочных отложений, а во многих местах докембрийские породы выходят на земную поверхность. Щит полосой шириной 250 км простирается почти на 1 000 км вдоль правого берега Днепра и выходит к Азовскому морю. Древними глубинными разломами щит разбит на крупные блоки.

На западном склоне щита лежит Волыно-Подольская плита. На ней глубина погружения кристаллического фундамента под толщу осадочных пород постепенно возрастает от десятков метров (на севере и востоке) до 4 км (на юго-западе). Особенно мощными там есть отложения песчаников и известняков. В западной части Восточноевропейской платформы плита переходит в Галицко-Волынскую впадину . Толща осадочных пород (песков, мергелей, мела) нарастает там до 6 км. На юге платформы находится Причерноморская впадина , которая так же выполнена осадочными отложениями — от 1до 11 км (На шельфе Черного моря).

Вдоль северо-восточной границы Украины в ее пределы заходит Воронежский кристаллический массив . Как и в щите, кристаллический фундамент там близко подходит к поверхности, однако везде перекрыт толщей осадочных пород в полкилометра и больше. Между украинским щитом и Воронежским массивом простирается длинная, узкая и глубокая Днепровско-Донецкая впадина . Она является одной из самых глубоких впадин в пределах всей Восточноевропейской платформы. Впадина наполнена осадочными породами, максимальная мощность которых достигает 20 км.

На крайнем востоке нашей страны впадина переходит в Донецкое складчатое сооружение , Которая образовалась на месте прогиба земной коры. Там многочисленные слои пород (песчаники, известняки, гипс, каменный уголь и др.) при герцинской складчатой эпохи были смяты в складки.

Кроме Восточноевропейской древней платформы в пределы Украина заходят части молодых платформ. Их фундаментом служат разрушенные складчатые сооружения, которые были образованы при герцинскойскладчатой эпохи. Западноевропейская платформа вклинивается узким «языком» на западе Украины и погружается под толщу пород Предкарпатскогопрогиба. Скифская платформа охватывает равнинную часть Крыма, прилегающую к нее часть шельфа Черного моря и большинство дна Азовского моря.

Рекорды Украине

По количеством и разнообразием основных тектонических структур, которые сталкиваются на территории Украины, наша страна является лидером среди европейских государств.

Удивительная Украины

Землетрясения на платформах

Несмотря на стабильность фундамента платформы, иногда в его давних глубинных разломах происходят смещение пластов. Это вызывает местные землетрясения силой до 5 баллов в эпицентре. В частности, в 2002 г. эпицентр такого землетрясения находился в поселке Микулинцы на Тернопольщине, а в 2007 г. — В г. Кривом Роге.


Рис. Тектоническое строение

Основными тектоническими структурами пояса является Карпатская складчатая система, складчато-глыбовых сооружение Горного Крыма и Черноморская впадина.

Карпатская складчатая система , Находящийся на крайнем западе страны, является составляющей общей структуры — Альпийской складчатой области. Долгое геологический развитие и проявление горотвирних процессов нескольких эпох повлекли очень сложное строение системы, распространение мощных толщ пород различного происхождения и возраста. Наряду с относительно молодыми осадочными отложениями (песчаниками, глинами, глинистыми сланцами) система составлена докембрийскими гнейсами, гранитами, кварцитами, кристаллическими сланцами. Осевой ее частью является Карпатская складчатая сооружение . В ней многокилометровая толща осадочных пород смята в складки, часто разорванные и смещены. Они надвинуть в северо-восточном направлении на прилегающий Предкарпатский прогиб . Прогиб заполнен осадочными породами (мощностью до 4,5 км) и является зоной стыковки Карпатской системы с Восточноевропейской платформой. На юго западе до складчатого сооружения прилегает Закарпатская впадина , Что является частью Среднедунайскойвпадины. Она составлена толщами осадочных и вулканических пород, которые образовались в проникновением магмы вдоль линий разломов.

Складчато-глыбовых сооружение Горного Крыма занимает юг Крымского полуострова. Западная и южная ее части погружены под дно Черного моря. Сооружение образована осадочными и вулканическими породами. Ее складки нарушены многочисленными сбросами, оползнями и надвигами.

Черноморская впадина , Которая занимает наиболее глубоководную часть Черного моря, является остатком древнего прогиба — моря Тетис . Земная кора под ней части океанического типа (т.е. не имеет гранитного слоя).

Зона современной сейсмической активности. Зона современной сейсмической активности связана с Средиземноморским подвижным поясом. В Карпатах и Крымско-Черноморском регионе возможны землетрясения силой 6 — 8 баллов по 12-балльной международной шкале. Последние разрушительные землетрясения на территории Украины были в 1927p. Их эпицентры находились в акватории Черного моря на небольшой расстоянии от южного побережья Крыма. В Карпатах эпицентры землетрясений 1977 и 1986 pокив находились на территории Румынии. Тогда колебания земной коры ощущалось на значительной части Правобережной Украина.

Рекорды Украине

З ІV ст. до н.э. и до наших дней в Крыму зафиксировано около 80 сильных землетрясений.

Удивительная Украины

Землетрясения в Крыму

В 1927 г. в Крыму произошли два землетрясения, повлекшие разрушения на побережье от Севастополя до Феодосии. В частности разрушилась часть скалы под известным дворцом "Ласточкино гнездо ". С тех пор разрушительных землетрясений не было. Однако чувствительные сейсмические приборы ежегодно фиксируют десятки слабых толчков. Большинство их эпицентров находится в Черном море между Ялтой и Гурфузом на глубине от 10 до 40 км под дном — там, где плита Черноморской впадины погружается под континентальную земную кору.



© dagexpo.ru, 2024
Стоматологический сайт