Электролиз. Электролиз и гидролиз солей

21.09.2019


Электролиз расплавов солей

Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов:

1. Электролиз расплава хлорида меди (II).

Электродные процессы могут быть выражены полуреакциями:


на катоде K(-): Сu 2+ + 2e = Cu 0 - катодное восстановление


на аноде A(+): 2Cl – - 2e = Cl 2 - анодное окисление


Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением:


Cu 2+ + 2 Cl – = Cu + Cl 2


При электролизе щелочей и солей оксокислот на аноде выделяется кислород:


4OH – - 4e = 2H 2 O + O 2


2SO 4 2– - 4e = 2SO 3 + O 2

2. Электролиз расплава хлорида калия:


Электролиз растворов

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.


На катоде «-» источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».


На аноде «+» происходит отдача электронов анионами, поэтому анод является «окислителем».


При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.


При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:
на аноде - окисление анионов и гидроксид-ионов,
на катоде - восстановление катионов и ионов водорода.


При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются:
на аноде - окисление анионов и гидроксид-ионов, анодное растворение металла - материала анода;
на катоде - восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.


При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих в своем составе анионы SO 4 2- , NО - 3 , РО 4 3- , а также растворов щелочей на аноде окисляется вода и выделяется кислород;


А + 2H 2 O - 4e - = 4H + + O 2

б) при окислении анионов Сl - , Вr - , I - выделяются соответственно хлор, бром, иод;


А + Cl - +e - = Cl 0

2. На катоде могут образовываться следующие продукты:

а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде восстанавливается вода и выделяется водород;


К - 2H 2 O + 2e - = H 2 + 2OH -


б) если ион металла расположен в ряду напряжений правее водорода, то на катоде выделяется металл.


К - Me n+ + ne - = Me 0


в) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al + и Н + , на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Пример: Электролиз водного раствора нитрата серебра на инертных электродах

Диссоциация нитрата серебра:


АgNО 3 = Аg + + NO 3 -


При электролизе водного раствора АgNО 3 на катоде происходит восстановление ионов Аg + , а на аноде - окисление молекул воды:


Катод: Аg + + е = А g


Анод: 2Н 2 О - 4е = 4Н + + О 2

Суммарное уравнение:______________________________________________


4AgNО 3 + 2Н 2 О = 4Ag + 4НNО 3 + О 2


Составьте схемы электролиза водных растворов: а) сульфата меди; б) хлорида магния; в) сульфата калия.


Во всех случаях электролиз проводится с использованием угольных электродов.

Пример: Электролиз водного раствора хлорида меди на инертных электродах

Диссоциация хлорида меди:


CuCl 2 ↔ Сu 2+ + 2Cl -


В растворе находятся ионы Си 2+ и 2Сl - , которые под действием электрического тока направляются к соответствующим электродам:


Катод - Cu 2+ + 2e = Cu 0


Анод + 2Cl - - 2e = Cl 2


_______________________________

CuCl 2 = Cu + Cl 2


На катоде выделяется металлическая медь, на аноде - газообразный хлор.


Если в рассмотренном примере электролиза раствора CuCl 2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl 0 и выделения хлора протекает окисление анода (меди).


В этом случае происходит растворение самого анода, и в виде ионов Сu 2+ он переходит в раствор.


Электролиз CuCl 2 с растворимым анодом можно записать так:



Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Пример: Электролиз водного раствора хлорида магния на инертных электродах

Диссоциация хлорида магния в водном растворе:


MgCl 2 ↔ Mg 2+ +2Сl -


Ионы магния не могут восстанавливаться в водном растворе (идет восстановление воды) , хлорид-ионы - окисляются.


Схема электролиза:



Пример: Электролиз водного раствора сульфата меди на инертных электродах

В растворе сульфат меди диссоциирует на ионы:


СuSО 4 = Сu 2+ + SO 4 2-


Ионы меди могут восстанавливаться на катоде в водном растворе.


Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды.


Схема электролиза:



Электролиз водного раствора соли активного металла и кислородсодержащей кислоты (К 2 SО 4) на инертных электродах

Пример: Диссоциация сульфата калия в водном растворе:

К 2 SО 4 = 2К + + SO 4 2-


Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно, на катоде будет протекать восстановление, а на аноде - окисление воды.


Схема электролиза:



или, учитывая, что 4Н + + 4ОН - = 4Н 2 О (осуществляется при перемешивании),


H 2 O 2H 2 + O 2


Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются.


На катоде выделяется водород, а на аноде - кислород, и электролиз сводится к электролитическому разложению воды.

Электролиз расплава гидроксида натрия


Электролиз воды проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита - воды):



Закон Фарадея

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:


где m - масса образовавшегося при электролизе вещества (г);


Э - эквивалентная масса вещества (г/моль);


М - молярная масса вещества (г/моль);


n - количество отдаваемых или принимаемых электронов;


I - сила тока (А); t - продолжительность процесса (с);


F - константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F = 96 500 Кл/моль = 26,8 Ач/моль).

Гидролиз неорганических соединений

Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.


Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.


1. Соль, образованная сильным основанием и сильной кислотой KBr, NaCl, NaNO 3) , гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.


2. В соли, образованной слабым основанием и сильной кислотой FeCl 2 , NH 4 Cl, Al 2 (SO 4) 3 , MgSO 4) гидролизу подвергается катион:


FeCl 2 + HOH → Fe(OH)Cl + HCl


Fe 2+ + 2Cl - + H + + OH - → FeOH + + 2Cl - + Н +


В результате гидролиза образуется слабый электролит, ион H + и другие ионы. рН раствора < 7 (раствор приобретает кислую реакцию).


3. Соль, образованная сильным основанием и слабой кислотой (КClO, K 2 SiO 3 , Na 2 CO 3 , CH 3 COONa) подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.


K 2 SiO 3 + НОH → KHSiO 3 + KОН


2K + +SiO 3 2- + Н + + ОH - → НSiO 3 - + 2K + + ОН -


рН таких растворов > 7 (раствор приобретает щелочную реакцию).


4. Соль, образованная слабым основанием и слабой кислотой (СН 3 СООNН 4 , (NН 4) 2 СО 3 , Al 2 S 3) гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания.

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и силиного основания

Различают несколько вариантов гидролиза солей:


1. Гидролиз соли слабой кислоты и сильного основания: (CH 3 COONa, KCN, Na 2 CO 3).


Пример 1. Гидролиз ацетата натрия.



или CH 3 COO – + Na + + H 2 O ↔ CH 3 COOH + Na + + OH –


CH 3 COO – + H 2 O ↔ CH 3 COOH + OH –


Так как уксусная кислота слабо диссоциирует, ацетат-ион связывает ион H + , и равновесие диссоциации воды смещается вправо согласно принципу Ле Шателье.


В растворе накапливаются ионы OH - (pH >7)



Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.


Например, гидролиз карбоната: Na 2 CO 3


I ступень: CO 3 2– + H 2 O ↔ HCO 3 – + OH –


II ступень: HCO 3 – + H 2 O ↔ H 2 CO 3 + OH –


Na 2 CO 3 + Н 2 О = NaHCO 3 + NaOH



Практическое значение обычно имеет только процесс, идущий по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей.


Равновесие гидролиза по второй ступени значительно смешено влево по сравнению с равновесием первой ступени, поскольку на первой ступени образуется более слабый электролит (HCO 3 –), чем на второй (H 2 CO 3)


Пример 2 . Гидролиз ортофосфата рубидия.


1. Определяем тип гидролиза:


Rb 3 PO 4 ↔ 3Rb + + PO 4 3–


Рубидий – щелочной металл, его гидроксид - сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, - слабая кислота.


Идет гидролиз по аниону.


PO 3- 4 + H–OH ↔ HPO 2- 4 + OH – .


Продукты - гидрофосфат- и гидроксид-ионы, среда – щелочная.


3. Составляем молекулярное уравнение:


Rb 3 PO 4 + H 2 O ↔ Rb 2 HPO 4 + RbOH.


Получили кислую соль – гидрофосфат рубидия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и слабого основания

2. Гидролиз соли сильной кислоты и слабого основания: NH 4 NO 3 , AlCl 3 , Fe 2 (SO 4) 3 .


Пример 1. Гидролиз нитрата аммония.



NH 4 + + NO 3 – + H 2 O ↔ NH 4 OH + NO 3 – + H +


NH 4 + + H 2 O ↔ NH 4 OH + H +



В случае многозарядного катиона гидролиз протекает ступенчато, например:


I ступень: Cu 2+ + HOH ↔ CuOH + + H +


II ступень: CuOH + + HOH ↔ Cu(OH) 2 + H +


СuСl 2 + Н 2 О = CuOHCl + HCl



При этом концентрация ионов водорода и pH среды в растворе также определяются главным образом первой ступенью гидролиза.


Пример 2. Гидролиз сульфата меди(II)


1. Определяем тип гидролиза. На этом этапе необходимо написать уравнение диссоциации соли:


CuSO 4 ↔ Cu 2+ + SO 2- 4 .


Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты. Идет гидролиз по катиону.


2. Пишем ионное уравнение гидролиза, определяем среду:


Cu 2+ + H-OH ↔ CuOH + + H + .


Образуется катион гидроксомеди(II) и ион водорода, среда – кислая.


3. Составляем молекулярное уравнение.


Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH) 2 SO 4 , но для этого наше ионное уравнение мы должны мысленно умножить на два.


Получаем:


2CuSO 4 + 2H 2 O ↔ (CuOH) 2 SO 4 + H 2 SO 4 .


Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)».

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и слабого основания

3. Гидролиз соли слабой кислоты и слабого основания:


Пример 1. Гидролиз ацетата аммония.



CH 3 COO – + NH 4 + + H 2 O ↔ CH 3 COOH + NH 4 OH

В этом случае образуются два малодиссоциированных соединения, и pH раствора зависит от относительной силы кислоты и основания.


Если продукты гидролиза могут удаляться из раствора, например, в виде осадка или газообразного вещества, то гидролиз протекает до конца.


Пример 2. Гидролиз сульфида алюминия.


Al 2 S 3 + 6H 2 O = 2Al(OН) 3 + 3H 2 S


2А l 3+ + 3 S 2- + 6Н 2 О = 2Аl(OН) 3 (осадок) + ЗН 2 S (газ)


Пример 3. Гидролиз ацетата алюминия


1. Определяем тип гидролиза:


Al(CH 3 COO) 3 = Al 3+ + 3CH 3 COO – .


Соль образована катионом слабого основания и анионами слабой кислоты.


2. Пишем ионные уравнения гидролиза, определяем среду:


Al 3+ + H–OH ↔ AlOH 2+ + H + ,


CH 3 COO – + H–OH ↔ CH 3 COOH + OH – .


Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону. Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.


Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.


3 . Составляем молекулярное уравнение:


Al(CH 3 COO) 3 + H 2 O = AlOH(CH 3 COO) 2 + CH 3 COOH.


Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и сильного основания

4. Соли, образованные сильной кислотой и сильным основанием, гидролизу не подвергаются, т.к. единственным малодиссоциирующим соединением является H 2 O.


Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

Электролиз – окислительно-восстановительный процесс, который протекает на электродах при прохождении постоянного электрического тока через растворы или расплавы электролитов. Сущность электролиза заключается в том, что при пропускании тока через раствор электролита (или расплавленный электролит) катионы перемещаются к отрицательному электроду (катоду), а анионы – к положительному электроду (аноду). Достигнув электродов, ионы разряжаются, в результате чего у электродов выделяются составные части растворенного электролита или водород и кислород из воды. При электролизе протекают два параллельных процесса: на катоде (заряжен отрицательно) процесс восстановления; на аноде (заряжен положительно) – процесс окисления. Таким образом, заряды электродов при электролизе противоположны тем, которые имеют место при работе гальванического элемента.

На характер и течение электродных процессов при электролизе большое влияние оказывают состав электролита, растворитель, материал электродов и режим электролиза (напряжение, плотность тока, температура и др.). Прежде всего, надо различать электролиз расплавленных электролитов и растворов.

Электролиз расплавов солей. Рассмотрим в качестве примера электролиз расплава хлорида меди (рис. 9.6.1). При высоких температурах расплав соли диссоциирует на ионы. При подключении электродов к источнику постоянного тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду.

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде:

Cu +2 + 2e Cu 0 .

Ионы хлора, достигнув анода, отдают электроны и образуют молекулы хлора Cl 2 . Хлор выделяется на аноде в виде пузырьков:

2Cl – – 2e .

Суммарное уравнение окислительно-восстановительной реакции, происходящей при электролизе расплава CuCl 2:

Cu +2 + 2Cl – Cu 0 + .

Электролиз водных растворов солей. В водных растворах, кроме ионов самого электролита, находятся также молекулы воды, способные восстанавливаться на катоде и окисляться на аноде.

Процессы на катоде. Возможность протекания восстановления ионов металла или молекул воды определяется значением электродного потенциала металла, а также характером среды (рН). В общем случае (без влияния характера среды) на катоде могут протекать следующие процессы (табл. 9.6.1):

1) если электролизу подвергается соль активного металла, то на катоде восстанавливаются молекулы воды. В результате у катода выделяется водород;



2) если электролизу подвергается соль среднеактивного металла, то происходит одновременное восстановление и катионов металла, и молекул воды;

3) если электролизу подвергается соль малоактивного металла, то на катоде восстанавливаются только катионы металла.

Таблица 9.6.1

Схема процессов, протекающих на катоде

Процессы на аноде . При рассмотрении анодных процессов следует учитывать тот факт, что материал анода в ходе электролиза может окисляться. Поэтому различают электролиз с инертным анодом и электролиз с активным анодом.

Инертным называется анод, материал которого в процессе электролиза химически не изменяется. Для изготовления инертных анодов обычно применяют графит, уголь, платину. На инертном аноде при электролизе водных растворов могут протекать процессы (табл. 9.6.2):

– если электролизу подвергается соль бескислородной кислоты, то на аноде окисляется анион кислотного остатка. Исключением является фтор-анион, имеющий высокий окислительный потенциал;

– если электролизу подвергается соль кислородсодержащей кислоты или сама кислота, то на аноде окисляются молекулы воды. В результате у анода выделяется кислород.

Таблица 9.6.2

Схема процессов, протекающих на аноде

Активным называется анод, материал которого (металл) входит в состав электролизуемой соли. При этом материал анода окисляется и металл переходит в раствор в виде ионов, т. е. окисляется. Активные аноды изготавливают из Cu, Ag, Zn, Cd, Ni, Fe и т. д. Для примера приведем электролиз нитрата серебра (AgNO 3) с нерастворимым и растворимым анодами (Ag):

где m – масса вещества, испытывающего электрохимическое превращение; M Э – эквивалентная молярная масса вещества; F – постоянная Фарадея, 96500 Кл; Q – количество электричества.

Так как Q=I×t ,где I – сила токаА, t – время,с, формулу 9.6.1 можно переписать в следующем виде

где m теор – масса выделяемого при электролизе вещества, рассчитанная по закону Фарадея, m эксп – масса вещества, выделившегося в процессе эксперимента.

Например, рассчитанное количество металла, выделяющегося на катоде, составило 6 г, а в ходе эксперимента было получено 4,8 г, соответственно выход по току составил 80 %.

2-й закон Фарадея. Массы прореагировавших на электродах веществ при постоянном количестве электричества относятся друг к другу как молярные массы их эквивалентов :

(9.6.4)

где m 1 , M Э 1 масса и молярная эквивалентная масса вещества, выделившегося на одном электроде, а m 2 , M Э 2 на другом электроде.

Электролизом называется разложение электролита (раствора солей, кислот, щелочей) электрическим током.

Электролиз можно производить только постоянным током. При электролизе на отрицательном электроде (катоде) выделяется водород или металл, содержащийся в соли. Если положительный электрод (анод) выполнен из металла (обычно того же, что и в соли), то положительный электрод при электролизе растворяется. Если анод нерастворим (например, угольный), то содержание металла в электролите при электролизе уменьшается.

Количество вещества, выделяющегося при электролизе на катоде, пропорционально количеству электричества, которое протекло через электролит.

Количество вещества, выделенное одним кулоном электричества, называется электрохимическим эквивалентом A, поэтому G=A Q; G=A I t,

где G – количество выделенного вещества; Q – количество электричества; I – электрический ток; t – время.

Каждый металл имеет свой электрохимический эквивалент A.

Примеры расчета

1. Сколько меди выделится из медного купороса (CuSO4) (рис. 1) током I=10 А за 30 мин. Электрохимический эквивалент меди A=0,329 мг/A сек.

Рис. 1. Схема к примеру 1

G = A I t = 0,329 10 30 60 = 5922 мг =5,922 г.

На предмете, подвешенном к катоду, выделится 5,9 г чистой меди.

2. Допустимая плотность тока при электролитическом меднении =0,4 А/дм2. Площадь катода, которая должна покрыться медью, S=2,5 дм2. Какой ток необходим для электролиза и сколько меди выделится на катоде за 1 ч (рис. 2 ).

Рис. 2 . Схема к примеру 2

I= S =0,4-2,5=l A; G=A Q=A I t=0,329 1 60 60=1184,4 мг.

3. Окисленная вода (например, слабый раствор серной кислоты H2SO4) при электролизе разлагается на водород и кислород. Электроды могут быть угольные, оловянные, медные и т. д., но лучше всего из платины. Сколько кислорода выделится на аноде и сколько водорода выделится на катоде за 1/4 ч при токе 1,5 А. Количество электричества 1 А сек выделяет 0,058 см3 кислорода и 0,116 см3 водорода (рис. 3 ).

Рис. 3 . Схема к примеру 3

На катоде выделится Gа=A I t=0,058 1,5 15 60=78,3 см3 кислорода.

На аноде выделится Gк=A I t=0,1162 1,5 15 60=156,8 см3 водорода.

Смесь водорода и кислорода в такой пропорции называется гремучим газом, который при поджигании взрывается с образованием воды.

4. Кислород и водород для лабораторных опытов получают при помощи (окисленной серной кислотой) (рис. 4 ). Платиновые электроды впаяны в стекло. Установим с помощью сопротивления ток I=0,5 А. (В качестве источника тока используется батарея из трех сухих элементов по 1,9 В.) Сколько водорода и кислорода выделится через 30 мин.

Рис. 4 . Рисунок к примеру 4

В правом сосуде выделится Gк=А I t=0,1162 0,5 30 60=104,58 см3 водорода.

В левом сосуде выделится Ga=A l t=0,058 0,5 30 60=52,2 см3 кислорода (газы выталкивают воду в средний сосуд).

5. Преобразовательная установка (двигатель-генератор) обеспечивает ток для получения электролитической (чистой) меди. За 8 ч необходимо получать 20 кг меди. Какой ток должен обеспечить генератор Электрохимический эквивалент меди равен A=0,329 мг/А сек.

Так как G=A I t, то I=G/(A t)=20000000/(0,329 8 3600)=20000000/9475,2=2110,7 А.

6. Нужно отхромировать 200 фар, из которых на каждую требуется 3 г хрома. Какой ток необходим, чтобы эта работа была выполнена за 10 ч (электрохимический эквивалент хрома A=0,18 мг/А сек).

I=G/(A t)=(200 3 1000)/(0,18 10 3600)=92,6 А.

7. Алюминий получают путем электролиза раствора каолиновой глины и криолита в ваннах при рабочем напряжении ванны 7 В и токе 5000 А. Аноды изготовляются угольными, а ванна – стальной с угольными блоками (рис. 5 ).

Рис. 5 .Рисунок к примеру 5

Ванны для получения алюминия соединяются последовательно для увеличения рабочего напряжения (например, 40 ванн). Для получения 1 кг алюминия требуется примерно 0,7 кг угольных анодов и 25–30 кВт ч электроэнергии. По приведенным данным определить мощность генератора, расход электроэнергии за 10 ч работы и вес полученного алюминия.

Мощность генератора при работе на 40 ванн P=U I=40 7 5000=1400000 Вт =1400 кВт.

Электрическая энергия, расходуемая за 10 ч, A=P t=1400 кВт 10 ч=14000 кВт ч.

Количество полученного алюминия G=14000: 25=560 кг.

Исходя из теоретического электрохимического эквивалента, количество полученного алюминия должно быть равно:

Gт=A I t=0,093 5000 40 10 3600=0,093 7200000000 мг=669,6 кг.

Коэффициент полезного действия электролитической установки равен: кпд=G/Gт =560/669,6=0,83=83%.

Которая протекает под действием электрического тока на электродах, погруженных в раствор или расплав электролита.

Существует два типа электродов.

Анод окисление .

Катод - это электрод, на котором происходит восстановление . К аноду стремятся анионы, так как он имеет положительный заряд. К катоду стремятся катионы, потому что он заряжен отрицательно и, согласно законам физики, разноименные заряды притягиваются. В любом электрохимическом процессе присутствуют оба электрода. Прибор, в котором осуществляется электролиз, называется электролизер. Рис. 1.

I . Процессы, происходящие при электролизе расплавов электролитов

В расплавах электролиты диссоциируют на ионы. Это термическая диссоциация электролитов. При пропускании электрического тока катионы восстанавливаются на катоде, так как принимают от него электроны. Анионы кислотного остатка и гидроксид-анионы окисляются на катоде, так как отдают ему свои электроны.

Пример №1. Электролиз расплава хлорида натрия

При термической диссоциации хлорида натрия образуются ионы натрия и хлора.

Na Cl → Na+ + Cl−

2 Na+ + 2 e− → 2 Na

На аноде выделяется хлор:

2 Cl− − 2 e− → Cl2

2 Na+ + 2 Cl− → 2 Na0 + Cl02

Суммарная реакция:

2 NaCl 2 Na + Cl2

Пример №2. Электролиз расплава гидроксида калия

При диссоциации гидроксида калия образуются ионы калия и гидроксид ионы.

КОН → К+ + ОН−

На катоде выделяется калий:

К+ + 1 e− → К

На аноде выделяется кислород и вода:

4ОН− − 4 e− → О2 + 2Н2О

4К+ + 4ОН− → 4 К0 + О2 + 2Н2О

Суммарная реакция:

4КОН 4 К0 + О2 + 2Н2О

Пример №3. Электролиз расплава сульфата натрия

При диссоциации расплава сульфата натрия образуются ионы натрия и сульфат-ионы.

Na2SO4 → 2Na+ + SО42−

На катоде выделяется натрий:

Na+ + 1 e− → Na

На аноде выделяется кислород и оксид серы (VI):

2SО42− − 4 e− → 2SО3 +О2

Суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 4)

4 Na+ + 2SО42− → 4 Na 0 + 2SО3 +О2

Суммарная реакция:

4 Na2SO44 Na 0 + 2SО3 +О2

Закономерности электролиза расплавов электролита

1. При электролизе расплавов щелочей и солей на катоде осаждается металл.

2. Анионы бескислородных кислот окисляются на аноде, давая соответствующее соединение, например, хлорид-анионы образуют хлор.

3. Анионы кислородсодержащих кислот образуют соответствующий оксид и кислород.

II . Процессы, происходящие при электролизе растворов электролитов

При электролизе растворов электролитов, кроме интересующих нас соединений есть еще и вода, которая также может подвергаться электролизу. Поэтому, исходя из строения соединения, электролиз может протекать либо с ионами соли, либо с водой.

Процессы, происходящие на катоде

1. Катионы активных металлов, стоящие в ряду напряжений до алюминия, не разряжаются на катоде. См. рис. 2. В этом случае происходит только восстановление воды.

2Н2О+2 e− → Н2 + 2ОН−

2. Катионы металлов, расположенных в ряду напряжений от алюминия до водорода, разряжаются в той или иной степени одновременно с молекулами воды. При этом одновременно происходят следующие процессы:

2Н2О+2 e− → Н2 + 2ОН−

3. При наличии в растворе катионов металлов, расположенных в ряду напряжений после водорода, на катоде, прежде всего, происходит восстановление катионов этих металлов. Men++ne- →Me

Процессы, происходящие на аноде

Различают два типа анодов: инертный и активный. Инертный анод - это анод, материал которого не окисляется в процессе электролиза (Pt). Активный анод - это анод, который окисляется в процессе электролиза. Например, графит.

Электролиз с инертным анодом

В анодном процессе могут принимать участие анионы некоторых бескислородных кислот Cl- ,Br- ,I-, S2-и гидроксид-ионы ОН -(разряжаются только эти анионы), например:

2Br- - 2е- →Br2; 4ОН− − 4 e− → О2 +2Н2О (в щелочной среде)

Если в растворе присутствуют анионы F-,SO2-4, NO-3, PO43-, CO32- и некоторые другие, то окислению подвергается только вода:

2Н2О - 4 e− → О2 + 4Н+(в нейтральной и кислой среде)

Электролиз с активным анодом

В случае с активным анодом, число конкурирующих окислительных процессов увеличивается до трех:

Электрохимическое окисление материала анода

Окисление воды с выделением кислорода

Окисление анионов растворенного соединения

Написание таких процессов рассматривается в высшей школе.

Приведем примеры электролиза раствора некоторых веществ.

Пример №1. Электролиз раствора хлорида натрия

При диссоциации хлорида натрия образуются ионы натрия и хлора.

Na Cl → Na+ + Cl−

Катодный процесс:

2Н2О+2 e− → Н2 + 2ОН−

Анодный процесс:

2 Cl− − 2 e− → Cl2

Суммарное ионное уравнение реакции

2Н2О + 2 Cl− → Н2 + 2ОН−+ Cl02

Суммарная реакция:

2Н2О +2 NaCl 2NaОН + Cl2 + Н2

По этой реакции получается гидроксид натрия и хлор.

Пример №2. Электролиз раствора сульфата меди (II ).

На катоде выделяется медь:

Сu2+ + 2 e− → Cu0

На аноде выделяется кислород

2Н2О - 4 e− → О2 + 4Н+

Суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 2)

2Сu2+ + 2Н2О → 2 Cu0+ О2 + 4Н+

Суммарная реакция:

2CuSO4 + 2Н2О 2Cu 0+О2+ 2H2SO4

Пример №3. Электролиз раствора нитрата калия

При диссоциации нитрата калия образуются ионы калия и нитрат-ионы.

КNO3 → К+ + NО3−

Катодный процесс:

2Н2О+2 e− → Н2 + 2ОН−

Анодный процесс:

2Н2О - 4 e− → О2 + 4Н+

Суммарное ионное уравнение реакции (уравнение катодного процесса помножили на 2)

2Н2О О2 +2Н2

Это один из способов получения водорода.

Электролиз находит применение во многих отраслях промышленности: химической, металлургии, для изготовления деталей требуемой формы, для электрохимического покрытия металлов.

Источники

http://www.youtube.com/watch?t=4&v=-ROZ0KU5ncM

http://www.youtube.com/watch?t=2&v=LtuAF1BL97U

конспект http://interneturok.ru/ru/school/chemistry/11-klass

источник презентации - http://ppt4web.ru/khimija/ehlektroliz5.html

заставка http://www.youtube.com/watch?t=63&v=EVEIC4Z6xuQ

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».

На аноде происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса: на аноде - окисление анионов и гидроксид-ионов, на катоде - восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются следующие:

на аноде - окисление анионов и гидроксид-ионов, анодное растворение металла - материала анода; на катоде - восстановление катиона соли и ионов водорода,

восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила.

1. На аноде могут образовываться следующие продукты: а) при электролизе растворов, содержащих в своем составе анионы , а также растворов щелочей выделяется кислород; б) при окислении анионов выделяются соответственно хлор, бром, иод; в) при окислении анионов органических кислот происходит процесс:

2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее на катоде выделяется водород; если ион расположен в ряду напряжений правее водорода, то на катоде выделяется металл.

3. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы которые под действием электрического тока направляются к соответствующим электродам:

На катоде выделяется металлическая медь, на аноде - газообразный хлор.

Если в рассмотренном примере электролиза раствора в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов он переходит в раствор. Электролиз с растворимым анодом можно записать так:

Таким образом, электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов:

Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются. На катоде выделяется водород, а на аноде - кислород, и электролиз сводится к электролитическому разложению воды.

Отметим наконец, что электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как электролиты - соли и щелочи - плавятся при очень высоких температурах.

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:

где m - масса образовавшегося при электролизе вещества (г); Э - эквивалентная масса вещества (г/моль); М - молярная масса вещества (г/моль); n - количество отдаваемых или принимаемых электронов; I - сила тока (А); t - продолжительность процесса (с); F - константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества .



© dagexpo.ru, 2024
Стоматологический сайт