Дана система линейных уравнений решить методом гаусса. Метод гаусса онлайн

30.09.2019

Карл Фридрих Гаусс, величайший математик долгое время колебался, выбирая между философией и математикой. Возможно, именно такой склад ума позволил ему столь заметно "наследить" в мировой науке. В частности, создав "Метод Гаусса" ...

Почти 4 года статьи этого сайта касались школьного образования, в основном, со стороны философии, принципов (не)понимания, внедряемых в сознание детей. Приходит время бОльшей конкретики, примеров и методов... Я верю, что именно такой подход к привычным, запутанным и важным областям жизни дает лучшие результаты.

Мы, люди так устроены, что сколько ни говори об абстрактном мышлении , но понимание всегда происходит через примеры . Если примеры отсутствуют, то принципы уловить невозможно... Как невозможно оказаться на вершине горы иначе, как пройдя весь ее склон от подножия.

Тоже и со школой: пока живых историй недостаточно мы инстинктивно продолжаем считать ее местом, где детей учат понимать.

Например, обучая методу Гаусса...

Метод Гаусса в 5 классе школы

Оговорюсь сразу: метод Гаусса имеет гораздо более широкое применение, например, при решении систем линейных уравнений . То, о чем мы будем говорить, проходят в 5 классе. Это начала , уяснив которые, гораздо легче разобраться в более "продвинутых вариантах". В этой статье мы говорим о методе (способе) Гаусса при нахождении суммы ряда

Вот пример, который принес из школы мой младший сын, посещающий 5 класс московской гимназии.

Школьная демонстрация метода Гаусса

Учитель математики с использованием интерактивной доски (современные методы обучения ) показал детям презентацию истории "создания метода" маленьким Гауссом.

Школьный учитель выпорол маленького Карла (устаревший метод, нынче в школах не применяется) за то, что тот,

вместо того, чтобы последовательно складывая числа от 1 до 100 найти их сумму заметил , что пары чисел, равно отстоящие от краев арифметической прогрессии, в сумме дают одно и то же число. например, 100 и 1, 99 и 2. Посчитав количество таких пар, маленький Гаусс почти моментально решил предложенную учителем задачу. За что и был подвергнут экзекуции на глазах изумленной публики. Чтобы остальным думать было неповадно.

Что сделал маленький Гаусс, развивший чувство числа ? Заметил некоторую особенность числового ряда с постоянным шагом (арифметической прогрессии). И именно это сделало его впоследствии великим ученым, умеющим замечать , обладающим чувством, инстинктом понимания .

Этим и ценна математика, развивающая способность видеть общее в частном - абстрактное мышление . Поэтому большинство родителей и работодателей инстинктивно считают математику важной дисциплиной ...

"Математику уже затем учить надо, что она ум в порядок приводит.
М.В.Ломоносов".

Однако, последователи тех, кто порол розгами будущих гениев, превратили Метод в нечто противоположное. Как 35 лет назад говорил мой научный руководитель: "Занаучили вопрос". Или как сказал вчера о методе Гаусса мой младший сын: "Может не стоит из этого большую науку делать-то, а?"

Последствия творчества "ученых" видны по уровню нынешней школьной математики, уровню ее преподавания и понимания "Царицы наук" большинством.

Однако, продолжим...

Методы объяснения метода Гаусса в 5 классе школы

Учитель математики московской гимназии, объясняя метод Гаусса по-Виленкину, усложнил задание.

Что, если разность (шаг) арифметической прогрессии будет не единица, а другое число? Например, 20.

Задача, которую он дал пятиклассникам:


20+40+60+80+ ... +460+480+500


Прежде, чем познакомиться с гимназическим методом, заглянем в Сеть: как это делают школьные учителя - репетиторы по математике?..

Метод Гаусса: объяснение №1

Известный репетитор на своем канале YOUTUBE приводит следующие рассуждения:

"запишем числа от 1 до 100 следующим образом:

сначала ряд чисел от 1 до 50, а строго под ним другой ряд чисел от 50 до 100, но в обратной последовательности"


1, 2, 3, ... 48, 49, 50

100, 99, 98 ... 53, 52, 51

"Обратите внимание: сумма каждой пары чисел из верхнего и нижнего рядов одинакова и равняется 101 ! Посчитаем количество пар, оно составляет 50 и умножим сумму одной пары на количество пар! Вуаля: Ответ готов!".

"Если вы не смогли понять - не расстраивайтесь!", - три раза в процессе объяснения повторил учитель. "Этот метод вы будете проходить в 9 классе!"

Метод Гаусса: объяснение №2

Другой репетитор, менее известный (судя по числу просмотров) использует более научный подход, предлагая алгоритм решения из 5 пунктов, которые необходимо выполнить последовательно.

Для непосвященных: 5 это одно из чисел Фибоначчи, традиционно считающееся магическим. Метод из 5 шагов всегда более научен, чем метод, например, из 6 шагов. ... И это вряд ли случайность, скорее всего, Автор - скрытый приверженец теории Фибоначчи

Дана арифметическая прогрессия: 4, 10, 16 ... 244, 250, 256 .

Алгоритм нахождения суммы чисел ряда методом Гаусса:


  • Шаг 1: переписать заданную последовательность чисел наоборот, точно под первой.
  • 4, 10, 16 ... 244, 250, 256

    256, 250, 244 ... 16, 10, 4

  • Шаг 2: посчитать суммы пар чисел, расположенных в вертикальных рядах: 260.
  • Шаг 3: посчитать, сколько таких пар в числовом ряду. Для этого вычесть из максимального числа числового ряда минимальное и разделить на величину шага: (256 - 4) / 6 = 42.
  • При этом нужно помнить о правиле "Плюс один" : к полученному частному необходимо прибавить единицу: иначе мы получим результат, меньший на единицу, чем истинное число пар: 42 + 1 = 43.

  • Шаг 4: умножить сумму одной пары чисел на количество пар: 260 х 43 = 11 180
  • Шаг5: поскольку мы посчитали сумму пар чисел , то полученную сумму следует разделить на два: 11 180 / 2 = 5590.
  • Это и есть искомая сумма арифметической прогрессии от 4 до 256 с разницей 6 !

    Метод Гаусса: объяснение в 5 классе московской гимназии

    А вот как требовалось решить задачу нахождения суммы ряда:

    20+40+60+ ... +460+480+500

    в 5 классе московской гимназии, учебник Виленкина (со слов моего сына).

    Показав презентацию, учительница математики показала пару примеров по методу Гаусса и дала классу задачу по нахождению суммы чисел ряда с шагом 20.

    При этом требовалось следующее:

  • Шаг 1: обязательно записать в тетради все числа ряда от 20 до 500 (с шагом 20).
  • Шаг 2: записать последовательно слагаемые - пары чисел: первого с последним, второго с предпоследним и т.д. и посчитать их суммы.
  • Шаг 3: посчитать "сумму сумм" и найти сумму всего ряда.
  • Как видим, это более компактная и эффективная методика: число 3 - также член последовательности Фибоначчи

    Мои комментарии к школьной версии метода Гаусса

    Великий математик определенно выбрал бы философию, если бы предвидел, во что превратят его "метод" последователи немецкого учителя , выпоровшего Карла розгами. Он узрел бы и символизм, и диалектическую спираль и неумирающую глупость "учителей", пытающихся измерить алгеброй непонимания гармонию живой математической мысли ....

    Между прочим: знаете ли вы. что наша система образования уходит корнями в немецкую школу 18 - 19 веков?

    Но Гаусс выбрал математику.

    В чем суть его метода?

    В упрощении . В наблюдении и схватывании простых закономерностей чисел. В превращении сухой школьной арифметики в интересное и увлекательное занятие , активизирующее в мозге желание продолжать, а не блокирующее высокозатратную умственную деятельность.

    Разве возможно одной из приведенных "модификаций метода" Гаусса посчитать сумму чисел арифметической прогрессии почти моментально ? По "алгоритмам" маленький Карл гарантированно избежал бы порки, воспитал отвращение к математике и подавил на корню свои творческие импульсы.

    Почему репетитор так настойчиво советовал пятиклассникам "не бояться непонимания" метода, убеждая, что "такие" задачи они будут решать аж в 9 классе? Психологически безграмотное действие . Удачным приемом было отметить : "Видите? Вы уже в 5 классе можете решать задачи, которые будете проходить только через 4 года! Какие вы молодцы!".

    Для использования метода Гаусса достаточно уровня 3 класса , когда нормальные дети уже умеют складывать, умножать и делить 2 -3 значные числа. Проблемы возникают из-за неспособности взрослых учителей, "не въезжающих", как объяснить простейшие вещи нормальным человеческим языком, не то что математическим... Не способных заинтересовать математикой и напрочь отбивающих охоту даже у "способных".

    Или, как прокомментировал мой сын: "делающих из этого большую науку".

  • Как (в общем случае) узнать, на каком именно числе следует "развернуть" запись чисел в методе № 1?
  • Что делать, если количество членов ряда окажется нечетным ?
  • Зачем превращать в "Правило плюс 1" то, что ребенок мог просто усвоить еще в первом классе, если бы развивал "чувство числа", а не запоминал "счет через десяток"?
  • И, наконец: куда исчез НОЛЬ, гениальное изобретение, которому более 2 000 лет и которым современные учителя математики избегают пользоваться?!.
  • Метод Гаусса, мои объяснения

    Нашему ребенку мы с супругой объясняли этот "метод", кажется, еще до школы...

    Простота вместо усложнения или игра в вопросы - ответы

    ""Посмотри, вот числа от 1 до 100. Что ты видишь?"

    Дело не в том, что именно увидит ребенок. Фокус в том, чтобы он стал смотреть.

    "Как можно их сложить?" Сын уловил, что такие вопросы не задаются "просто так" и нужно взглянуть на вопрос "как-то по-другому, иначе, чем он делает обычно"

    Не важно, увидит ли ребенок решение сразу, это маловероятно. Важно, чтобы он перестал бояться смотреть, или как я говорю: "шевелил задачу" . Это начало пути к пониманию

    "Что легче: сложить, например, 5 и 6 или 5 и 95?" Наводящий вопрос... Но ведь любое обучение и сводится к "наведению" человека на "ответ" - любым приемлемым для него способом.

    На этом этапе уже могут возникнуть догадки о том, как "сэкономить" на вычислениях.

    Все, что мы сделали - намекнули: "лобовой, линейный" метод счета - не единственно возможный. Если ребенок это усек, то впоследствии он выдумает еще много таких методов, ведь это интересно!!! И он точно избежит "непонимания" математики, не будет испытывать к ней отвращение. Он получил победу!

    Если ребенок обнаружил , что сложение пар чисел, дающих в сумме сотню, плевое занятие, то "арифметическая прогрессия с разницей 1" - довольно муторная и неинтересная для ребенка вещь - вдруг для него обрела жизнь . Из хаоса возник порядок, а это всегда вызывает энтузиазм: так мы устроены !

    Вопрос на засыпку: зачем после полученного ребенком озарения вновь загонять его в рамки сухих алгоритмов, к тому же функционально бесполезных в этом случае?!

    Зачем заставлять тупо переписывать числа последовательности в тетрадь: чтобы даже у способных не возникло и единого шанса на понимание? Статистически, конечно, а ведь массовое образование заточено на "статистику" ...

    Куда делся ноль?

    И все-таки складывать числа, дающие в сумме 100 для ума гораздо более приемлемо, чем дающие 101 ...

    "Школьный метод Гаусса" требует именно этого: бездумно складывать равноотстоящие от центра прогрессии пары чисел, несмотря ни на что .

    А если посмотреть?

    Все-таки ноль - величайшее изобретение человечества, которому более 2 000 лет. А учителя математики продолжают его игнорировать.

    Гораздо проще преобразовать ряд чисел, начинающийся с 1, в ряд, начинающийся с 0. Сумма ведь не изменится, не правда ли? Нужно перестать "думать учебниками" и начать смотреть... И увидеть, что пары с суммой 101 вполне можно заменить парами с суммой 100 !

    0 + 100, 1 + 99, 2 + 98 ... 49 + 51

    Как упразднить "правило плюс 1"?

    Если честно, то я о таком правиле впервые услышал от того ютубовского репетитора...

    Как я до сих пор поступаю, когда требуется определить количество членов какого-нибудь ряда?

    Смотрю на последовательность:

    1, 2, 3, .. 8, 9, 10

    а когда совсем устал, то на более простой ряд:

    1, 2, 3, 4, 5

    и прикидываю: если вычесть из 5 единицу, то получится 4, но я совершенно ясно вижу 5 чисел! Следовательно, нужно прибавить единицу! Чувство числа, развитое в начальной школе, подсказывает: даже если членов ряда будет целый гугл (10 в сотой степени), закономерность останется той же.

    На фиг правила?..

    Чтобы через пару - тройку лет заполнить все пространство между лбом и затылком и перестать соображать? А зарабатывать на хлеб с маслом как? Ведь мы ровными шеренгами движемся в эпоху цифровой экономики!

    Еще о школьном методе Гаусса: "зачем науку-то из этого делать?.."

    Я не зря разместил скриншот из тетрадки сына...

    "Что там было, на уроке?"

    "Ну, я сосчитал сразу, поднял руку, но она не спросила. Поэтому, пока остальные считали я стал делать ДЗ по русскому языку, чтобы не тратить время. Потом, когда остальные дописали (???), она вызвала меня к доске. Я сказал ответ."

    "Правильно, покажи, как ты решал", - сказала учительница. Я показал. Она сказала: "Неправильно, нужно считать так, как я показала!"

    "Хорошо, что двойку не поставила. И заставила написать в тетради "ход решения" по-ихнему. Зачем науку-то большую из этого делать?.."

    Главное преступление учителя математики

    Вряд ли после того случая Карл Гаусс испытал высокое чувство уважения по отношению к школьному учителю математики. Но если бы он знал, как последователи того учителя извратят самую суть метода ... он взревел бы от негодования и через Всемирную организацию интеллектуальной собственности ВОИС добился запрета на использование своего честного имени в школьных учебниках!..

    В чем главная ошибка школьного подхода ? Или, как я выразился - преступление школьных учителей математики против детей?

    Алгоритм непонимания

    Что делают школьные методисты, абсолютное большинство которых думать не умеет ни фига?

    Создают методики и алгоритмы (см. ). Это защитная реакция, предохраняющая учителей от критики ("Все делается согласно..."), а детей - от понимания. И таким образом - от желания критиковать учителей! (Вторая производная чиновничьей "мудрости", научный подход к проблеме ). Человек не улавливая смысл скорее будет пенять на собственное непонимание, а не на тупость школьной системы.

    Что и происходит: родители пеняют на детей, а учителя... то же на детей, "не понимающих математику!..

    Смекаете?

    Что сделал маленький Карл?

    Абсолютно нешаблонно подошел к шаблонной задаче . Это квинтэссенция Его подхода. Это главное, чему следует учить в школе: думать не учебниками, а головой . Конечно, есть и инструментальная составляющая, которую вполне можно использовать... в поисках более простых и эффективных методов счета .

    Метод Гаусса по-Виленкину

    В школе учат, что метод Гаусса состоит в том, чтобы

  • попарно находить суммы чисел, равноотстоящих от краев числового ряда, непременно начиная с краев !
  • находить число таких пар и т.д.
  • что, если число элементов ряда окажется нечетным , как в задаче, которую задали сыну?..

    "Подвох" состоит в том, что в этом случае следует обнаружить "лишнее" число ряда и прибавить его к сумме пар. В нашем примере это число 260 .

    Как обнаружить? Переписывая все пары чисел в тетрадь! (Именно почему учительница заставила детей делать эту тупую работу, пытаясь научить "творчеству" методом Гаусса... И именно поэтому такой "метод" практически неприменим к большим рядам данных, И именно поэтому он не является методом Гаусса).

    Немного творчества в школьной рутине...

    Сын же поступил иначе.

  • Сначала он отметил, что умножать легче число 500, а не 520
  • (20 + 500, 40 + 480 ...).

  • Потом он прикинул: количество шагов оказалось нечетным: 500 / 20 = 25.
  • Тогда он в начало ряда добавил НОЛЬ (хотя можно было и отбросить последний член ряда, что также обеспечило бы четность) и сложил числа, дающие в сумме 500
  • 0+500, 20+480, 40+460 ...

  • 26 шагов это 13 пар "пятисоток": 13 х 500 = 6500..
  • Если мы отбросили последний член ряда, то пар будет 12, но к результату вычислений следует не забыть прибавить "отброшенную" пятисотку. Тогда: (12 х 500) + 500 = 6500 !

  • Несложно, правда?

    А практически делается еще легче, что и позволяет выкроить 2-3 минуты на ДЗ по русскому, пока остальные "считают". К тому же сохраняет количество шагов методики: 5, что не позволяет критиковать подход за антинаучность.

    Явно этот подход проще, быстрее и универсальнее, в стиле Метода. Но... учительница не то, что не похвалила, но и заставила переписать "правильным образом" (см. скриншот). То есть предприняла отчаянную попытку задушить творческий импульс и способность понимать математику на корню! Видимо, чтобы потом наняться репетитором... Не на того напала...


    Все, что я так долго и нудно описал можно объяснить нормальному ребенку максимум за полчаса. Вместе с примерами.

    Причем так, что он это никогда не забудет.

    И это будет шаг к пониманию ... не только математики.

    Признайтесь: сколько раз в жизни вы складывали методом Гаусса? И я ни разу!

    Но инстинкт понимания , который развивается (или гасится) в процессе изучения математических методов в школе... О!.. Это поистине незаменимая вещь!

    Особенно в век всеобщей цифровизации, в который мы незаметно вошли под чутким руководством Партии и Правительства.

    Несколько слов в защиту учителей...

    Несправедливо и неправильно всю ответственность за такой стиль обучения сваливать исключительно на школьных учителей. Действует система.

    Некоторые учителя понимают абсурдность происходящего, но что делать? Закон об образовании, ФГОСы, методики, технологические карты уроков... Все должно делаться "в соответствии и на основании" и все должно быть задокументировано. Шаг в сторону - встал в очередь на увольнение. Не будем ханжами: зарплата московских учителей ну очень неплохая... Уволят - куда идти?..

    Поэтому сайт этот не об образовании . Он об индивидуальном образовании , единственно возможном способе выбраться из толпы поколения Z ...

    Пусть задана система линейных алгебраических уравнений, которую необходимо решить (найти такие значения неизвестных хi, что обращают каждое уравнение системы в равенство).

    Мы знаем, что система линейных алгебраических уравнений может:

    1) Не иметь решений (бытьнесовместной ).
    2) Иметь бесконечно много решений.
    3) Иметь единственное решение.

    Как мы помним,правило Крамера и матричный методнепригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гаусса наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений , который в каждом случае приведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.

    Преобразования расширенной матрицы (это матрица системы - матрица, составленная только из коэффициентов при неизвестных, плюс столбец свободных членов) системы линейных алгебраических уравнений в методе Гаусса:

    1) с троки матрицыможно переставлять местами.

    2) если в матрице появились (или есть) пропорциональные (как частный случай – одинаковые) строки, то следуетудалить из матрицы все эти строки кроме одной.

    3) если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить .

    4) строку матрицы можноумножить (разделить) на любое число,отличное от нуля.

    5) к строке матрицы можноприбавить другую строку, умноженную на число , отличное от нуля.

    В методе Гаусса элементарные преобразования не меняют решение системы уравнений.

    Метод Гаусса состоит из двух этапов:

    1. «Прямой ход» - с помощью элементарных преобразований привести расширенную матрицу системы линейных алгебраических уравнений к «треугольному» ступенчатому виду: элементы расширенной матрицы, расположенные ниже главной диагонали, равны нулю (ход «сверху-вниз»). Например, к такому виду:

    Для этого выполним следующие действия:

    1) Пусть мы рассматриваем первое уравнение системы линейных алгебраических уравнений и коэффициент при х 1 равен К. Второе, третье и т.д. уравнения преобразуем следующим образом: каждое уравнение (коэффициенты при неизвестных, включая свободные члены) делим на коэффициент при неизвестном х 1 , стоящий в каждом уравнении, и умножаем на К. После этого из второго уравнения (коэффициенты при неизвестных и свободные члены) вычитаем первое. Получаем при х 1 во втором уравнении коэффициент 0. Из третьего преобразованного уравнения вычитаем первое уравнение, так до тех пор, пока все уравнения, кроме первого, при неизвестном х 1 не будут иметь коэффициент 0.

    2) Переходим к следующему уравнению. Пусть это будет второе уравнение и коэффициент при х 2 равен М. Со всеми «нижестоящими» уравнениями поступаем так, как описано выше. Таким образом, «под» неизвестной х 2 во всех уравнениях будут нули.

    3) Переходим к следующему уравнению и так до тех пора, пока не останется одна последняя неизвестная и преобразованный свободный член.

    1. «Обратный ход» метода Гаусса – получение решения системы линейных алгебраических уравнений (ход «снизу-вверх»). Из последнего «нижнего» уравнения получаем одно первое решение – неизвестную х n . Для этого решаем элементарное уравнение А*х n = В. В примере, приведенном выше, х 3 = 4. Подставляем найденное значение в «верхнее» следующее уравнение и решаем его относительно следующей неизвестной. Например, х 2 – 4 = 1, т.е. х 2 = 5. И так до тех пор, пока не найдем все неизвестные.

    Пример.

    Решим систему линейных уравнений методом Гаусса, как советуют некоторые авторы:

    Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

    Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Поступим так:
    1 шаг . К первой строке прибавляем вторую строку, умноженную на –1. То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

    Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное действие: умножить первую строку на –1 (сменить у неё знак).

    2 шаг . Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

    3 шаг . Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

    4 шаг . К третьей строке прибавили вторую строку, умноженную на 2.

    5 шаг . Третью строку разделили на 3.

    Признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде (0 0 11 |23) , и, соответственно, 11x 3 = 23, x 3 = 23/11, то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

    Выполняем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает «снизу вверх». В данном примере получился подарок:

    x 3 = 1
    x 2 = 3
    x 1 + x 2 – x 3 = 1, следовательно x 1 + 3 – 1 = 1, x 1 = –1

    Ответ :x 1 = –1, x 2 = 3, x 3 = 1.

    Решим эту же систему по предложенному алгоритму. Получаем

    4 2 –1 1
    5 3 –2 2
    3 2 –3 0

    Разделим второе уравнение на 5, а третье – на 3. Получим:

    4 2 –1 1
    1 0.6 –0.4 0.4
    1 0.66 –1 0

    Умножим второе и третье уравнения на 4, получим:

    4 2 –1 1
    4 2,4 –1.6 1.6
    4 2.64 –4 0

    Вычтем из второго и третьего уравнений первое уравнение, имеем:

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 0.64 –3 –1

    Разделим третье уравнение на 0,64:

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 1 –4.6875 –1.5625

    Умножим третье уравнение на 0,4

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 0.4 –1.875 –0.625

    Вычтем из третьего уравнения второе, получим «ступенчатую» расширенную матрицу:

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 0 –1.275 –1.225

    Таким образом, так как в процессе вычислений накапливалась погрешность, получаем х 3 = 0,96 или приблизительно 1.

    х 2 = 3 и х 1 = –1.

    Решая таким образом, Вы никогда не запутаетесь в вычислениях и не смотря на погрешности вычислений, получите результат.

    Такой способ решения системы линейных алгебраических уравнений легко программируем и не учитывает специфические особенности коэффициентов при неизвестных, ведь на практике (в экономических и технических расчетах) приходиться иметь дело именно с нецелыми коэффициентами.

    Желаю успехов! До встречи на занятиях! Репетитор .

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Пусть задана система линейных алгебраических уравнений, которую необходимо решить (найти такие значения неизвестных хi, что обращают каждое уравнение системы в равенство).

    Мы знаем, что система линейных алгебраических уравнений может:

    1) Не иметь решений (бытьнесовместной ).
    2) Иметь бесконечно много решений.
    3) Иметь единственное решение.

    Как мы помним,правило Крамера и матричный методнепригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гаусса наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений , который в каждом случае приведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.

    Преобразования расширенной матрицы (это матрица системы - матрица, составленная только из коэффициентов при неизвестных, плюс столбец свободных членов) системы линейных алгебраических уравнений в методе Гаусса:

    1) с троки матрицыможно переставлять местами.

    2) если в матрице появились (или есть) пропорциональные (как частный случай – одинаковые) строки, то следуетудалить из матрицы все эти строки кроме одной.

    3) если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить .

    4) строку матрицы можноумножить (разделить) на любое число,отличное от нуля.

    5) к строке матрицы можноприбавить другую строку, умноженную на число , отличное от нуля.

    В методе Гаусса элементарные преобразования не меняют решение системы уравнений.

    Метод Гаусса состоит из двух этапов:

    1. «Прямой ход» - с помощью элементарных преобразований привести расширенную матрицу системы линейных алгебраических уравнений к «треугольному» ступенчатому виду: элементы расширенной матрицы, расположенные ниже главной диагонали, равны нулю (ход «сверху-вниз»). Например, к такому виду:

    Для этого выполним следующие действия:

    1) Пусть мы рассматриваем первое уравнение системы линейных алгебраических уравнений и коэффициент при х 1 равен К. Второе, третье и т.д. уравнения преобразуем следующим образом: каждое уравнение (коэффициенты при неизвестных, включая свободные члены) делим на коэффициент при неизвестном х 1 , стоящий в каждом уравнении, и умножаем на К. После этого из второго уравнения (коэффициенты при неизвестных и свободные члены) вычитаем первое. Получаем при х 1 во втором уравнении коэффициент 0. Из третьего преобразованного уравнения вычитаем первое уравнение, так до тех пор, пока все уравнения, кроме первого, при неизвестном х 1 не будут иметь коэффициент 0.

    2) Переходим к следующему уравнению. Пусть это будет второе уравнение и коэффициент при х 2 равен М. Со всеми «нижестоящими» уравнениями поступаем так, как описано выше. Таким образом, «под» неизвестной х 2 во всех уравнениях будут нули.

    3) Переходим к следующему уравнению и так до тех пора, пока не останется одна последняя неизвестная и преобразованный свободный член.

    1. «Обратный ход» метода Гаусса – получение решения системы линейных алгебраических уравнений (ход «снизу-вверх»). Из последнего «нижнего» уравнения получаем одно первое решение – неизвестную х n . Для этого решаем элементарное уравнение А*х n = В. В примере, приведенном выше, х 3 = 4. Подставляем найденное значение в «верхнее» следующее уравнение и решаем его относительно следующей неизвестной. Например, х 2 – 4 = 1, т.е. х 2 = 5. И так до тех пор, пока не найдем все неизвестные.

    Пример.

    Решим систему линейных уравнений методом Гаусса, как советуют некоторые авторы:

    Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

    Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Поступим так:
    1 шаг . К первой строке прибавляем вторую строку, умноженную на –1. То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

    Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное действие: умножить первую строку на –1 (сменить у неё знак).

    2 шаг . Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

    3 шаг . Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

    4 шаг . К третьей строке прибавили вторую строку, умноженную на 2.

    5 шаг . Третью строку разделили на 3.

    Признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде (0 0 11 |23) , и, соответственно, 11x 3 = 23, x 3 = 23/11, то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

    Выполняем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает «снизу вверх». В данном примере получился подарок:

    x 3 = 1
    x 2 = 3
    x 1 + x 2 – x 3 = 1, следовательно x 1 + 3 – 1 = 1, x 1 = –1

    Ответ :x 1 = –1, x 2 = 3, x 3 = 1.

    Решим эту же систему по предложенному алгоритму. Получаем

    4 2 –1 1
    5 3 –2 2
    3 2 –3 0

    Разделим второе уравнение на 5, а третье – на 3. Получим:

    4 2 –1 1
    1 0.6 –0.4 0.4
    1 0.66 –1 0

    Умножим второе и третье уравнения на 4, получим:

    4 2 –1 1
    4 2,4 –1.6 1.6
    4 2.64 –4 0

    Вычтем из второго и третьего уравнений первое уравнение, имеем:

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 0.64 –3 –1

    Разделим третье уравнение на 0,64:

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 1 –4.6875 –1.5625

    Умножим третье уравнение на 0,4

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 0.4 –1.875 –0.625

    Вычтем из третьего уравнения второе, получим «ступенчатую» расширенную матрицу:

    4 2 –1 1
    0 0.4 –0.6 0.6
    0 0 –1.275 –1.225

    Таким образом, так как в процессе вычислений накапливалась погрешность, получаем х 3 = 0,96 или приблизительно 1.

    х 2 = 3 и х 1 = –1.

    Решая таким образом, Вы никогда не запутаетесь в вычислениях и не смотря на погрешности вычислений, получите результат.

    Такой способ решения системы линейных алгебраических уравнений легко программируем и не учитывает специфические особенности коэффициентов при неизвестных, ведь на практике (в экономических и технических расчетах) приходиться иметь дело именно с нецелыми коэффициентами.

    Желаю успехов! До встречи на занятиях! Репетитор Дмитрий Айстраханов .

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Здесь вы сможете бесплатно решить систему линейных уравнений методом Гаусса онлайн больших размеров в комплексных числах с очень подробным решением. Наш калькулятор умеет решать онлайн как обычную определенную, так и неопределенную систему линейных уравнений методом Гаусса, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие, свободные. Также можно проверить систему уравнений на совместность онлайн, используя решение методом Гаусса.

    Размер матрицы: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 X 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    О методе

    При решении системы линейных уравнений онлайн методом Гаусса выполняются следующие шаги.

    1. Записываем расширенную матрицу.
    2. Фактически решение разделяют на прямой и обратный ход метода Гаусса. Прямым ходом метода Гаусса называется приведение матрицы к ступенчатому виду. Обратным ходом метода Гаусса называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
    3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение линейной системы в таком случае не существует.

    Чтобы лучше всего понять принцип работы алгоритма Гаусса онлайн введите любой пример, выберите "очень подробное решение" и посмотрите его решение онлайн.

    Одним из простейших способов решения системы линейных уравнений является прием, основанный на вычислении определителей (правило Крамера ). Его преимущество состоит в том, что он позволяет сразу провести запись решения, особенно он удобен в тех случаях, когда коэффициенты системы являются не числами, а какими-то параметрами. Его недостаток – громоздкость вычислений в случае большого числа уравнений, к тому же правило Крамера непосредственно не применимо к системам, у которых число уравнений не совпадает с числом неизвестных. В таких случаях обычно применяют метод Гаусса .

    Системы линейных уравнений, имеющие одно и то же множество решений, называются эквивалентными . Очевидно, что множество решений линейной системы не изменится, если какие-либо уравнения поменять местами, или умножить одно из уравнений на какое-либо ненулевое число, или если одно уравнение прибавить к другому.

    Метод Гаусса (метод последовательного исключения неизвестных ) заключается в том, что с помощью элементарных преобразований система приводится к эквивалентной системе ступенчатого вида. Сначала с помощью 1-го уравнения исключается x 1 из всех последующих уравнений системы. Затем с помощью2-го уравнения исключается x 2 из 3-го и всех последующих уравнений. Этот процесс, называемый прямым ходом метода Гаусса , продолжается до тех пор, пока в левой части последнего уравнения останется только одно неизвестное x n . После этого производится обратный ход метода Гаусса – решая последнее уравнение, находим x n ; после этого, используя это значение, из предпоследнего уравнения вычисляем x n –1 и т.д. Последним находим x 1 из первого уравнения.

    Преобразования Гаусса удобно проводить, осуществляя преобразования не с самими уравнениями, а с матрицами их коэффициентов. Рассмотрим матрицу:

    называемую расширенной матрицей системы, ибо в нее, кроме основной матрицы системы, включен столбец свободных членов. Метод Гаусса основан на приведении основной матрицы системы к треугольному виду (или трапециевидному виду в случае неквадратных систем) при помощи элементарных преобразованиях строк (!) расширенной матрицы системы.

    Пример 5.1. Решить систему методом Гаусса:

    Решение . Выпишем расширенную матрицу системы и, используя первую строку, после этого будем обнулять остальные элементы:

    получим нули во 2-й, 3-й и 4-й строках первого столбца:


    Теперь нужно чтобы все элементы во втором столбце ниже 2-й строки были равны нулю. Для этого можно умножить вторую строку на –4/7 и прибавить к 3-й строке. Однако чтобы не иметь дело с дробями, создадим единицу во 2-й строке второго столбца и только

    Теперь, чтобы получить треугольную матрицу, нужно обнулить элемент четвертой строки 3-го столбца, для этого можно умножить третью строку на 8/54 и прибавить ее к четвертой. Однако чтобы не иметь дело с дробями поменяем местами 3-ю и 4-ю строки и 3-й и 4-й столбец и только после этого произведем обнуление указанного элемента. Заметим, что при перестановке столбцов меняются местами, соответствующие переменные и об этом нужно помнить; другие элементарные преобразования со столбцами (сложение и умножение на число) производить нельзя!


    Последняя упрощенная матрица соответствует системе уравнений, эквивалентной исходной:

    Отсюда, используя обратный ход метода Гаусса, найдем из четвертого уравнения x 3 = –1; из третьего x 4 = –2, из второго x 2 = 2 и из первого уравнения x 1 = 1. В матричном виде ответ записывается в виде

    Мы рассмотрели случай, когда система является определенной, т.е. когда имеется только одно решение. Посмотрим, что получится, если система несовместна или неопределенна.

    Пример 5.2. Исследовать систему методом Гаусса:

    Решение . Выписываем и преобразуем расширенную матрицу системы

    Записываем упрощенную систему уравнений:

    Здесь, в последнем уравнении получилось, что 0=4, т.е. противоречие. Следовательно, система не имеет решения, т.е. она несовместна . à

    Пример 5.3. Исследовать и решить систему методом Гаусса:

    Решение . Выписываем и преобразуем расширенную матрицу системы:

    В результате преобразований, в последней строке получились одни нули. Это означает, что число уравнений уменьшилось на единицу:

    Таким образом, после упрощений осталось два уравнения, а неизвестных четыре, т.е. два неизвестных "лишних". Пусть "лишними", или, как говорят, свободными переменными , будут x 3 и x 4 . Тогда

    Полагая x 3 = 2a и x 4 = b , получим x 2 = 1–a и x 1 = 2b a ; или в матричном виде

    Записанное подобным образом решение называется общим , поскольку, придавая параметрам a и b различные значения, можно описать все возможные решения системы. à



    © dagexpo.ru, 2024
    Стоматологический сайт