Что такое космическая радиация? Источники, опасность. Радиация и космос: что нужно знать? («Радиационные» секреты, которые скрывает космическое пространство)

12.10.2019

где μ – массовый коэффициент ослабления рентгеновского излучения см 2 /г, х/ ρ – массовая толщина зашиты г/см 2 . Если рассматривают несколько слоев, тогда под экспонентой находятся несколько слагаемых со знаком минус.

Мощность поглощенной доза радиации от рентгеновского излучения за единицу времени N определяется интенсивностью излучения I и массовым коэффициентом поглощения μ EN

N = μ EN I

Для расчетов массовые коэффициенты ослабления и поглощения для разных значений энергии рентгеновского излучения взяты согласно NIST X-Ray Mass Attenuation Coefficients.

В таблице 1 приведены используемые параметры и результаты расчетов для поглощенной и эквивалентной дозы радиации от защиты.

Таблица 1. Характеристика рентгеновского излучения, коэффициенты ослабления в Al и поглощения в организме, толщина защиты, результат расчета поглощенной и эквивалентной дозы радиации за сутки*

Рентгеновское излучение от Солнца

Коэф. ослаб. и поглощ.

Поглощенная и эквивалентная доза радиации от внешней защиты, рад/сут (мЗв/сут)

длина
волны,
А
E, кэВ сред. поток, Ватт/м 2 Al, см 2 /г орг.
кость,
см 2 /г
1,5 г/ см 2 (LM-5) 0,35 г/ см 2 (скаф. Кречет) 0,25 г/ см 2 (скаф. XA-25) 0,15 г/ см 2 (скаф. XA-15) 0,25 г/ см 2 (скаф. XO-25) 0,21 г/ см 2 (скаф. ОрланМ) 0,17 г/ см 2 (скаф. A7L)
1,2560 10,0 1,0·10 -6 26,2 28,5 0,0000 0,0006 0,0083 0,1114 1,0892 1,2862 1,5190
0,6280 20,0 3,0·10 -9 3,44 4,00 0,0001 0,0038 0,0054 0,0075 0,0061 0,0063 0,0065
0,4189 30,0 1,0·10 -9 1,13 1,33 0,0003 0,0010 0,0010 0,0012 0,0009 0,0009 0,0009

Итого рад/сут:

Итого мЗв/сут:

0,000 0,004 0,005 0,054 0,015 0,147 0,120 1,202 1,0961 10,961 1,2934 12,934 1,5263 15,263

*Примечание – толщина защиты LM-5 и скафандров “Кречет”, “ХА-25” и “ХА-15” в алюминиевом эквиваленте, что соответствует 5,6, 1,3, 0,9 и 0,6 мм листового алюминия; толщина защиты “ХО-25”, “Орлан-М” и A7L тканеэквивалентного вещества, что соответствует 2,3, 1,9 и 1,5 мм тканеэквивалента.

Данную таблицу используют для оценки дозы радиации за сутки для других значений интенсивности рентгеновского излучения, умножая на коэффициент отношения между табличным значением потока и искомым усредненным за сутки. Результаты расчетов приведена на рис. 3 и 4 в виде шкалы поглощенной дозы радиации.

Расчет показывает, что лунный модуль с защитой 1,5 г/см 2 (или 5,6 мм Al) полностью поглощает мягкое и жесткое рентгеновское излучение Солнца. Для самой мощной вспышке от 4 ноября 2003 года (по состоянию на 2013 год и регистрируемых с 1976 года) интенсивность ее рентгеновского излучения в пике составляла 28·10−4 Вт/м 2 для мягкого излучения и 4·10−4 Вт/м 2 для жесткого излучения. За сутки усредненная интенсивность составит, соответственно, 10 Вт/м 2 сут и 1,3 Вт/м 2 . Доза радиации для экипажа за сутки равна 8 рад или 0,08 Гр, что безопасно для человека.

Вероятность подобных событий, как 4 ноября 2003 года, определяется как 30 минут за 37 лет. Или равна ~1/650000 час−1. Это очень низкая вероятность. Для сравнения – среднестатистический человек проводит вне дома за всю свою жизнь ~300000 часов, что соответствует возможности быть очевидцем ренгеновского события от 4 ноября 2003 года с вероятностью 1/2.

Для определения радиационных требований к скафандру мы рассматриваем рентгеновские вспышки на Солнце, когда их интенсивность увеличивается в 50 раз для мягкого излучения и 1000 раз для жесткого излучения по отношению к среднему суточному фону максимальной активности Солнца. Согласно рис. 4, вероятность таких событий – 3 вспышки за 30 лет. Интенсивность для мягкого рентгеновского излучения будет равна 4,3 Ватт/м 2 сутки и для жесткого – 0,26 Вт/м 2 .

Радиационные требования и параметры лунного скафандра

В скафандре на поверхности Луны эквивалентные дозы радиации от рентгеновского излучения увеличиваются.

При использовании скафандра “Кречет” для табличных значений интенсивности излучения доза радиации составит 5 мрад/сут. Защиту от рентгеновского излучения обеспечивает 1,2-1,3 мм листового алюминия, уменьшая интенсивность излучения в ~e9=7600 раз. При использовании меньшей толщины листового алюминия дозы радиации увеличиваются: для 0,9 мм Al – 15 мрад/сути, для 0,6 мм Al – 120 мрад/сути.

Согласно МАГАТЭ, такой радиационный фон признан нормальным условием для человека.

При увеличении мощности излучения от Солнца до значения 0,86 Ватт/м 2 сутки доза радиации для защиты 0,6 мм Al равна 1,2 рад/сути, что находится на границе нормальных и опасных условий для здоровья человека.

Лунный скафандр “Кречет”. Вид на открытый ранцевый люк, через который космонавт входит в скафандр. В рамках советской лунной программы понадобилось создать скафандр, позволяющий достаточно длительное время работать непосредственно на Луне. Он имел название «Кречет» и стал прообразом скафандров «Орлан», которые используются сегодня на для работы в открытом космосе. Вес 106 кг.

Доза радиации увеличивается на порядок при использовании защиты тканеэквивалентного вещества (полимеры, как майлар, капрон, фетр, стекловолокно). Так для скафандра “Орлан-М” при защите 0,21 г/см 2 тканеэквивалентного вещества интенсивность излучения уменьшается в ~e3=19 раз и доза радиации от рентгеновского излучения для костной ткани организма составит 1,29 рад/сути. Для защиты 0,25 г/см 2 и 0,17 г/см 2 , соответственно, 1,01 и 1,53 рад/сути.

Экипаж Аполлон-16 Джон Янг (командир), Томас Маттингли (пилот командного модуля) и Чарльз Дьюк (пилот лунного модуля) в скафандре A7LB. Самостоятельно одеть такой скафандр сложно.

Юджин Сернан в скафандре A7LB, миссия Аполлона-17.

A7L - основной тип скафандра использовавшийся астронавтами НАСА в программе Аполлон до 1975 года.Вид с разрезом верхней одежды. Верхняя одежда включала: 1) огнеупорная ткань из стекловолокна весом 2 кг, 2) экранно-вакуумная тепловая изоляция (ЭВТИ) для защиты человека от перегрева при нахождении на Солнце и от чрезмерной потери тепла на неосвещенной поверхности Луны, представляет собой пакет из 7 слоев тонкой пленки майлара и капрона с блестящей алюминированной поверхностью, между слоями проложена тончайшая вуаль волокон дакрона, вес составлял 0,5 кг; 3) противометеорный слой из нейлона с неопреновым покрытием (толщиной 3–5 мм) и весом 2–3 кг. Внутренняя оболочка скафандра изготавливалась из прочной ткани, пластика, прорезиненной ткани и резины. Масса внутренней оболочки ~20 кг. В комплект входили шлем, рукавицы, боты и СОЖ. Масса комплекта скафандра A7L для внекорабельной деятельности 34,5 кг

При увеличении интенсивности излучения от Солнца до значения 0,86 Ватт/м 2 сутки доза радиации для защиты 0,25 г/см 2 , 0,21 г/см 2 и 0,17 г/см 2 тканеэквивалентного вещества, соответственно, равна 10,9, 12,9 и 15,3 рад/сути. Такая доза равноценна 500-700 процедурам рентгенографии грудной клетки человека.Однократная доза 10-15 рад влияет на нервную систему и психику, на 5% повышается риск заболевания лейкозом крови, наблюдают умственную отсталость у потомков родителей. По МАГАТЭ такой радиационный фон представляет очень серьезную опасность для человека.

При интенсивности рентгеновского излучения 4,3 Ватт/м 2 сутки дозы радиации за сутки имеет значение 50-75 рад и вызывает радиационные заболевания.

Космонавт Михаил Тюрин в скафандре Орлан-М. Скафандр использовался на станции МИР и МКС с 1997 по 2009. Вес 112 кг. В настоящее время на МКС используется Орлан-МК (модернизированный, компьютеризированный). Вес 120 кг.

Самый простой выход – это снижение времени пребывания космонавта под прямыми лучами Солнца до 1 часа. Поглощенная доза радиации в скафандре Орлан-М уменьшится до 0,5 рад. Другой подход – работа в тени космической станции, в этом случае длительность внекорабельной деятельности можно значительно увеличить, несмотря на высокое внешнее рентгеновское излучение. В случае пребывания на поверхности Луны далеко за пределами лунной базы быстрое возвращение и укрытие не всегда возможно. Можно воспользоваться тенью лунного ландшафта или зонтиком от ренгеновских лучей…

Простым эффективным способом защиты от рентгеновского излучения Солнца является использование листового алюминия в скафандре. При 0,9 мм Al (толщина 0,25 г/см 2 в алюминиевом эквиваленте) скафандр имеет 67-кратный запас от среднего рентгеновского фона. При 10 кратном увеличении фона до 0,86 Ватт/м 2 сутки доза радиации равна 0,15 рад/сути. Даже при внезапном 50-кратном увеличении рентгеновского потока от среднего фона до значения 4,3 Ватт/м 2 сутки поглощенная доза радиации за сутки не превысит 0,75 рад.

При 0,7 мм Al (толщина 0,20 г/см 2 в алюминиевом эквиваленте) защита сохраняет 35-кратный радиационный запас. При 0,86 Ватт/м 2 сутки доза радиации составит не более 0,38 рад/сути. При 4,3 Ватт/м 2 сутки поглощенная доза радиации не превысит 1,89 рад.

Как показывают расчеты, для обеспечения радиационной защиты, как 0,25 г/см 2 в алюминиевом эквиваленте, требуется тканеэквивалент в 1,4 г/см 2 . При таком значении массовой защиты скафандра возрастет его толщина в несколько раз и понижает его юзабилити.

ИТОГИ И ВЫВОДЫ

В случае протонного излучения тканеэквивалентная защита имеет преимущество перед алюминием на 20-30%.

При рентгеновском излучении предпочтение имеет защита скафандра в алюминиевом эквиваленте, чем из полимеров. Данный вывод совпадает с результатами исследований Дэвида Смита (David Smith) и Джона Скало.

Лунные скафандры должны иметь два параметра защиты:

1) параметр защиты скафандра тканеэквивалентного вещества от протонного излучения, не ниже 0,21 г/см 2 ;
2) параметр защиты скафандра в алюминиевом эквиваленте от рентгеновского излучения, не ниже 0,20 г/см 2 .

При использовании во внешней оболочке скафандра с площадью 2,5-3 м 2 защиты Al масса скафандра на базе Орлан-МК увеличится на 5-6 кг.

Для лунного скафандра суммарная поглощенная доза радиации от солнечного ветра и рентгеновских лучей Солнца в год максимума солнечной активности составит 0,19 рад/сут (эквивалентная доза радиации – 8,22 мЗв/сут). Такой скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра и 35-кратный запас радиационной прочности для рентгеновского излучения. Никакие дополнительные меры защиты, как радиационные алюминиевые зонтики, не нужны.

Для скафандра Орлан-М, соответственно, 1,45 рад/сут (эквивалентная доза радиации – 20,77 мЗв/сут). Скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра.

Для скафандра A7L (A7LB) миссии Аполлон, соответственно, 1,70 рад/сут (эквивалентная доза радиации – 23,82 мЗв/сут). Скафандр имеет 3-кратный запас радиационной прочности для солнечного ветра.

При непрерывном пребывание в течении 4 суток на поверхности Луны в современных скафандрах Орлан или типа A7L человек набирает дозу радиации 0,06-0,07 Гр, что представляет опасность для его здоровья. Это соответствует выводам Дэвида Смита и Джона Скало, что в окололунном космическом пространстве в современном скафандре за 100 часов с вероятностью 10% человек получит опасную для здоровья и жизни дозу радиации выше 0,1 Грэй. Для скафандров Орлан или типа A7L необходимы дополнительные меры защиты от рентгеновского излучения, как радиационные алюминиевые зонтики.

Предлагаемый лунный скафандр на базе Орлан за 4 суток набирает дозу радиации 0,76 рад или 0,0076 Гр. (Один час пребывания на поверхности луны в скафандре под солнечным ветром соответствует двум процедурам рентгенографии грудной клетки). Согласно МАГАТЭ радиационный риск признан нормальным условием для человека.

NASA проводит испытания нового скафандра для готовящегося в 2020 году полета человека на Луну.

Кроме радиационного риска от солнечного ветра и рентгеновского излучения Солнца идет поток . Об этом далее.

Космос радиоактивен. Укрыться от радиации просто невозможно. Представьте себе, что вы стоите посреди песчаной бури, и вокруг вас постоянно кружит водоворот из мелких камешков, которые ранят вашу кожу. Примерно так выглядит космическая радиация. И эта радиация наносит немалый вред. Но проблема в том, что в отличие от камушков и кусочков земли ионизирующее излучение не отскакивает от человеческой плоти. Оно проходит сквозь нее, как пушечное ядро пробивает насквозь здание. И эта радиация наносит немалый вред.

На прошлой неделе ученые из медицинского центра при университете города Рочестера опубликовали результаты исследования, свидетельствующие о том, что длительное воздействие галактической радиации, которому могут подвергнуться астронавты, отправившиеся на Марс, способно повысить риск заболевания болезнью Альцгеймера.

Читая сообщения СМИ об этом исследовании, я начала любопытствовать. Мы отправляем людей в космос уже более полувека. Мы имеем возможность следить за целым поколением астронавтов - как эти люди старятся и умирают. И мы постоянно отслеживаем состояние здоровья тех, кто сегодня летает в космос. Научные работы, подобные осуществленным в университете Рочестера, проводятся на лабораторных животных, таких, как мыши и крысы. Они призваны помочь нам подготовиться к будущему. Но что мы знаем о прошлом? Повлияла ли радиация на людей, которые уже побывали в космосе? Как она воздействует на находящихся на орбите в данный момент?

Существует одно ключевое отличие астронавтов сегодняшнего дня от астронавтов будущего. Отличие это - сама Земля.

Галактическое космическое излучение, называемое иногда космической радиацией, это как раз то, что вызывает наибольшую тревогу у исследователей. Оно состоит из частиц и кусочков атомов, которые могли появиться в результате образования сверхновой звезды. Большая часть этого излучения, примерно 90%, состоит из протонов, оторванных от атомов водорода. Эти частицы летят через галактику почти что со скоростью света.

А потом они наносят удар по Земле. У нашей планеты имеется пара защитных механизмов, укрывающих нас от воздействия космической радиации. Во-первых, магнитное поле Земли отталкивает некоторые частицы, а некоторые полностью блокирует. Преодолевшие данный барьер частицы начинают сталкиваться с атомами, находящимися в нашей атмосфере.

Если вы сбросите вниз с лестницы большую башню, построенную из деталей конструктора «Лего», она разлетится на мелкие куски, которые будут отлетать от нее на каждой новой ступеньке. Примерно то же самое происходит в нашей атмосфере и с галактической радиацией. Частицы сталкиваются с атомами и распадаются на части, образуя новые частицы. Эти новые частицы снова обо что-нибудь ударяются и опять распадаются на части. С каждый шагом они теряют энергию. Частицы замедляются и постепенно слабеют. К тому времени, когда они «останавливаются» на поверхности Земли, у них уже нет того мощного запаса галактической энергии, какой они обладали прежде. Это излучение намного менее опасно. Маленькая деталь от «Лего» бьет намного слабее, чем собранная из них башня.

Всем тем астронавтам, которых мы отправляли в космос, защитные барьеры Земли во многом помогли, по крайней мере, частично. Об этом мне рассказал Фрэнсис Кучинотта (Francis Cucinotta). Он - научный руководитель программы НАСА по исследованию воздействия радиации на человека. Это как раз тот парень, который может рассказать, насколько вредна радиация для астронавтов. По его словам, за исключением полетов «Аполлона» на Луну, человек присутствует в космосе в пределах действия магнитного поля Земли. Международная космическая станция, например, находится выше атмосферы, но все равно в глубине первого эшелона обороны. Наши астронавты не подвергаются в полной мере воздействию космического излучения.

Кроме того, под таким воздействием они находятся довольно непродолжительное время. Самый длительный полет в космос продолжался чуть больше года. А это важно, потому что ущерб от радиации имеет кумулятивное действие. Ты рискуешь гораздо меньше, когда шесть месяцев проводишь на МКС, чем когда отправляешься (пока теоретически) в многолетнее путешествие на Марс.

Но интересно и довольно тревожно то, сказал мне Кучинотта, что даже имея все эти механизмы защиты, мы наблюдаем, как излучение негативно воздействует на астронавтов.

Очень неприятная вещь это катаракта - изменения в хрусталике глаза, вызывающие его помутнение. Поскольку через мутный хрусталик в глаз человека попадает меньше света, больные катарактой люди хуже видят. В 2001 году Кучинотта с коллегами изучил данные продолжающегося исследования состояния здоровья астронавтов и пришел к следующему выводу. Астронавты, подвергшиеся большей дозе радиации (потому что они совершили больше полетов в космос или из-за специфики их миссий*) имели больше шансов на развитие у них катаракты, чем те, у кого доза облучения была ниже.

Наверняка существует также повышенная опасность заболевания раком, хотя количественно и точно такую опасность проанализировать трудно. Дело в том, что у нас нет данных эпидемиологов о том, какому типу радиации подвергаются астронавты. Мы знаем количество заболевших раком после атомной бомбардировки Хиросимы и Нагасаки, однако эта радиация несопоставима с галактическим излучением. В частности, Кучинотту больше всего беспокоят ионы ВВЧ - высокоатомных высокоэнергетических частиц.

Это очень тяжелые частицы, и перемещаются они очень быстро. На поверхности Земли мы не испытываем на себе их воздействие. Их отсеивают, тормозят и разбивают на части защитные механизмы нашей планеты. Однако ионы ВВЧ могут наносить больший вред и вред более разнообразный, чем то излучение, с которым радиологи хорошо знакомы. Мы знаем об этом, потому что ученые сравнивают пробы крови астронавтов до и после полета в космос.

Кучинотта называет это предполетной поверкой. Ученые берут образец крови у астронавта перед отправлением на орбиту. Когда астронавт находится в космосе, ученые делят взятую кровь на части и подвергают ее воздействию гамма-излучения различной степени. Это вроде той вредной радиации, с которой мы порой сталкиваемся на Земле. Затем, когда астронавт возвращается, они сравнивают эти подвергнутые гамма-излучению образцы крови с тем, что реально произошло с ним в космосе. «Мы отмечаем двух- трехкратную разницу у разных астронавтов», - сказал мне Кучинотта.

Кто же не мечтал о полётах в космос, даже зная, что такое космическая радиация? Хотя бы на орбиту Земли или на Луну улететь, а ещё лучше - подальше, на Орион какой-нибудь. На самом деле, человеческий организм очень мало приспособлен к подобным путешествиям. Даже при полёте на орбиту космонавты сталкиваются со многими опасностями, угрожающими их здоровью, а иногда и жизни. Все смотрели культовый сериал "Звёздный путь". Один из замечательных персонажей там дал очень точную характеристику такому явлению, как космическая радиация. "Это опасности и болезни во тьме и безмолвии" - сказал Леонард Маккой, он же Костлявый, он же Костоправ. Точнее выразиться очень трудно. Космическая радиация в путешествии сделает человека усталым, слабым, больным, страдающим от депрессии.

Ощущения в полёте

Человеческий организм к жизни в безвоздушном пространстве не приспособлен, поскольку эволюция не включала в свой арсенал такие способности. Об этом написаны книги, этот вопрос во всех подробностях изучается медициной, созданы во всём мире центры, исследующие проблемы медицины в космосе, в экстремальных условиях, на больших высотах. Конечно, забавно смотреть, как улыбается на экране космонавт, вокруг которого плавают в воздухе различные предметы. На самом деле, его экспедиция гораздо более серьёзна и чревата последствиями, чем представляется простому жителю с Земли, и здесь не только космическая радиация создаёт неприятности.

По просьбе журналистов астронавты, инженеры, учёные, на собственном опыте испытавшие всё, что происходит с человеком в космосе, рассказали о последовательности разнообразных новых ощущений в чуждой для организма искусственно созданной среде. Буквально через десять секунд после начала полёта неподготовленный человек теряет сознание, потому что ускорение космического аппарата возрастает, отделяя его от пускового комплекса. Человек пока не так сильно, как в открытом космосе, ощущает космические лучи - радиация поглощается атмосферой нашей планеты.

Основные неприятности

Но хватает и перегрузок: человек становится раза в четыре тяжелее собственного веса, в кресло его буквально вдавливает, даже рукой пошевелить трудно. Все видели эти специальные кресла, например, в космическом аппарате "Союз". Но не все поняли, почему у космонавта такая странная поза. Однако она необходима, потому что перегрузки отправляют почти всю кровь в организме вниз, в ноги, и мозг остаётся без кровоснабжения, отчего и случаются обмороки. Но изобретённое в Советском Союзе кресло помогает избежать хотя бы этой неприятности: поза с приподнятыми ногами заставляет кровь снабжать кислородом все участки головного мозга.

Через десять минут после начала полёта отсутствие гравитации заставит человека почти утратить чувство равновесия, ориентацию и координацию в пространстве, человек даже движущиеся объекты может не отследить. Его тошнит и рвёт. То же самое могут вызвать и космические лучи - радиация здесь уже значительно сильнее, а если случается выброс плазмы на солнце, угроза жизни космонавтов на орбите реальна, даже пассажиры авиалайнеров могут пострадать в полёте на большой высоте. Изменяется зрение, случаются отёк и изменения на сетчатке глаз, глазное яблоко деформируется. Человек становится слабым и не может выполнять задачи, которые перед ним стоят.

Загадки

Однако время от времени люди ощущают и на Земле высокую космическую радиацию, им для этого совершенно не обязательно бороздить космические просторы. Нашу планету постоянно бомбардируют лучи космического происхождения, и учёные предполагают, что далеко не всегда наша атмосфера обеспечивает достаточную защиту. Есть множество теорий, которые наделяют эти энергетические частицы такой силой, которая значительно ограничивает шансы планет на возникновение жизни на них. Во многом природа этих космических лучей всё ещё является для наших учёных неразрешимой загадкой.

Субатомные заряженные частицы в космосе движутся практически со скоростью света, их уже зарегистрировали неоднократно и на спутниках, и даже на Это ядра химических элементов, протоны, электроны, фотоны и нейтрино. Также не исключается присутствие в атаке космической радиации частиц - тяжёлой и сверхтяжёлой. Если бы удалось их обнаружить, был бы разрешён целый ряд противоречий в космологических и астрономических наблюдениях.

Атмосфера

Что нас защищает от космической радиации? Только наша атмосфера. Угрожающие гибелью всему живому космические лучи сталкиваются в ней и генерируют потоки других частиц - безвредных, в том числе и мюонов, значительно более тяжёлых родственников электронов. Потенциальная опасность всё-таки существует, поскольку некоторые частицы достигают поверхности Земли и проникают на многие десятки метров в её недра. Уровень радиации, который получает любая планета, показывает пригодность или непригодность её для жизни. Высокая которую несут с собой космические лучи, намного превышает излучение от собственной звезды, потому что энергия протонов и фотонов, например, нашего Солнца - ниже.

А с высокой жизнь невозможна. На Земле эта доза контролируется силой магнитного поля планеты и толщиной атмосферы, именно они значительно уменьшают опасность космической радиации. Например, на Марсе вполне могла бы быть жизнь, но атмосфера там ничтожно мала, собственного магнитного поля нет, а значит нет и защиты от космических лучей, которые пронизывают весь космос. Уровень радиации на Марсе огромен. А влияние космической радиации на биосферу планеты таково, что всё живое на ней погибает.

Что важнее?

Нам повезло, у нас есть и толща атмосферы, окутывающая Землю, и собственное достаточно мощное магнитное поле, поглощающее зловредные частицы, долетевшие до земной коры. Интересно, чья защита для планеты работает активнее - атмосферы или магнитного поля? Исследователи экспериментируют, создавая модели планет, снабжая их магнитным полем или не снабжая. И само магнитное поле отличается у этих моделей планет по силе. Ранее учёные были уверены, что именно оно является главной защитой от космической радиации, поскольку контролируют её уровень на поверхности. Однако обнаружилось, что количество облучения определяет в большей степени толщина атмосферы, которая укрывает планету.

Если на Земле "отключить" магнитное поле, доза облучения вырастет всего в два раза. Это очень много, но даже на нас отразится довольно малоощутимо. А если оставить магнитное поле и убрать атмосферу до одной десятой общего её количества, тогда доза возрастёт убийственно - на два порядка. Страшная космическая радиация убьёт на Земле всё и вся. Наше Солнце - желтая карликовая звезда, именно вокруг них планеты считаются основными претендентами на обитаемость. Это звёзды относительно тусклые, их много, около восьмидесяти процентов от общего количества звёзд в нашей Вселенной.

Космос и эволюция

Теоретики подсчитали, что такие планеты на орбитах желтых карликов, которые находятся в зонах, пригодных для жизни, имеют гораздо более слабые магнитные поля. Особенно этим отличаются так называемые супер-Земли - большие скалистые планеты массой в десять раз больше нашей Земли. Астробиологи были уверены, что слабость магнитных полей значительно снижает шансы на пригодность для жизни. И теперь новые открытия говорят о том, что это не настолько масштабная проблема, как привыкли думать. Главное - была бы атмосфера.

Учёными всесторонне изучается влияние возрастающего излучения на существующие живые организмы - животных, а также на разнообразные растения. Связанные с радиацией исследования заключаются в том, что их подвергают облучению в разной степени, от малых до предельных, и затем определяют - выживут ли они и насколько иначе будут себя чувствовать, если выживут. Микроорганизмы, на которые влияет постепенно возрастающая радиация, возможно, покажут нам, как происходила на Земле эволюция. Именно космические лучи, высокая радиация их когда-то заставили будущего человека слезть с пальмы и заняться изучением космоса. И больше уже никогда человечество на деревья не вернётся.

Космическая радиация 2017 года

В начале сентября 2017-го вся наша планета была сильно встревожена. Солнце внезапно выбросило тонны солнечного вещества после слияния двух больших групп тёмных пятен. И этот выброс сопровождался вспышками класса Х, которые заставили магнитное поле планеты работать буквально на износ. Последовала большая магнитная буря, вызвавшая недомогания у многих людей, а также исключительно редкие, практически небывалые природные явления на Земле. Например, под Москвой и в Новосибирске были зафиксированы мощные картины северного сияния, никогда не бывавшие в этих широтах. Однако красота таких явлений не заслонила последствия убийственной солнечной вспышки, пронизавшей планету космической радиацией, которая оказалась по-настоящему опасна.

Мощность её была близка к максимальной, Х-9,3, где буква - класс (экстремально большая вспышка), а число - сила вспышки (из десяти возможных). Вместе с этим выбросом появилась угроза отказа систем космической связи и всей техники, находящейся на Космонавты были вынуждены пережидать этот поток страшной космической радиации, которую несут космические лучи, в специальном убежище. Качество связи в эти двое суток значительно ухудшилось и в Европе, и в Америке, именно там, куда был направлен поток заряженных частиц из космоса. Примерно за сутки до момента, когда частицы достигли поверхности Земли, было сделано предупреждение о космической радиации, которое прозвучало на всех континентах и в каждой стране.

Мощь Солнца

Энергия, выбрасываемая нашим светилом в окружающее космическое пространство, поистине огромна. В течение нескольких минут в космос улетают многие миллиарды мегатонн, если считать в тротиловом эквиваленте. Человечество столько энергии сможет выработать современными темпами только за миллион лет. Всего лишь пятая часть всей энергии, излучаемой Солнцем в секунду. И это наш маленький и не слишком горячий карлик! Если только представить себе, сколько губительной энергии вырабатывают остальные источники космической радиации, рядом с которыми наше Солнышко покажется практически невидимой песчинкой, голова пойдёт кругом. Какое счастье, что у нас хорошее магнитное поле и отличная атмосфера, которые не дают нам погибнуть!

Люди ежедневно подвергаются такой опасности, поскольку радиоактивное излучение в космосе никогда не иссякает. Именно оттуда к нам приходит большая часть радиации - из чёрных дыр и от скоплений звёзд. Она способна убивать при большой дозе облучения, а при малой - делать из нас мутантов. Однако нужно помнить и то, что эволюция на Земле произошла благодаря таким потокам, радиация изменила структуру ДНК до того состояния, которое мы наблюдаем сегодня. Если же перебрать этого "лекарства", то есть, если испускаемая звёздами радиация превысит допустимые отметки, процессы будут необратимы. Ведь если существа мутируют, к первоначальному состоянию они уже не вернутся, нет здесь никакого обратного эффекта. Поэтому мы уже никогда не увидим те живые организмы, которые присутствовали в новорождённой на Земле жизни. Любой организм пытается подстроиться под изменения, происходящие в окружающей среде. Или погибает, или подстраивается. Но обратной дороги нет.

МКС и солнечная вспышка

Когда Солнце послало нам свой приветик с потоком заряженных частиц, МКС как раз проходила между Землёй и светилом. Высокоэнергичные протоны, высвобожденные при взрыве, создали абсолютно нежелательный радиационный фон в пределах станции. Эти частицы пробивают насквозь совершенно любой космический корабль. Тем не менее, космическую технику это излучение пощадило, поскольку удар был мощным, но слишком коротким, чтобы вывести её из строя. Однако экипаж всё это время прятался в специальном укрытии, потому что человеческий организм гораздо уязвимее современной техники. Вспышка была не одна, они шли целой серией, а началось всё это 4 сентября 2017 года, чтобы 6 сентября потрясти космос экстремальным выбросом. За последние двенадцать лет более сильного потока на Земле ещё не наблюдали. Облако плазмы, которое выбросило Солнце, настигло Землю гораздо раньше намеченного срока, значит, скорость и мощность потока превысили ожидаемую в полтора раза. Соответственно и удар по Земле был гораздо более сильным, чем рассчитывали. На двенадцать часов облако опередило все расчёты наших учёных, и соответственно сильнее возмутило магнитное поле планеты.

Мощность магнитной бури получилась на оценку четыре из пяти возможных, то есть - в десять раз больше предполагаемой. В Канаде полярные сияния тоже наблюдались даже в средних широтах, как и в России. Планетарного характера магнитная буря случилась на Земле. Можно себе представить, что там творилось в космосе! Радиация - самая значительная опасность из всех там существующих. Защита от неё нужна немедленно, как только космический корабль покидает верхние слои атмосферы и оставляет далеко внизу магнитные поля. Потоки незаряженных и заряженных частиц - радиационное излучение - постоянно пронизывают космос. Такие же условия нас ждут на любой планете Солнечной системы: магнитного поля и атмосферы на наших планетах нет.

Виды радиации

В космосе самой опасной считается ионизирующая радиация. Это гамма-излучение и рентгеновские лучи Солнца, это частицы, летящие после хромосферных солнечных вспышек, это внегалактические, галактические и солнечные космические лучи, солнечный ветер, протоны и электроны радиационных поясов, альфа-частицы и нейтроны. Есть и неионизирующая радиация - это ультрафолетовое и инфракрасное излучения от Солнца, это электромагнитное излучение и видимый свет. В них большой опасности нет. Нас защищает атмосфера, а космонавта - скафандр и обшивка корабля.

Ионизирующая радиация же доставляет непоправимые беды. Это вредное действие на все жизненные процессы, которые протекают в человеческом организме. Когда частица высокой энергии или фотон проходят через вещество, находящееся на их пути, они образуют в результате взаимодействия с этим веществом пару заряженных частиц - ион. Даже на неживом веществе это сказывается, а живое реагирует наиболее бурно, поскольку организация высокоспециализированных клеток требует обновления, и процесс этот, покуда жив организм, происходит динамически. И чем выше уровень эволюционного развития организма, тем более необратимым получается радиационное поражение.

Защита от облучения

Учёные ищут такие средства в самых разных областях современной науки, в том числе и в фармакологии. Пока что ни один препарат эффективных результатов не даёт, и подвергшиеся радиационному облучению люди продолжают погибать. Эксперименты проводятся на животных и на земле, и в космосе. Единственное, что стало понятно, - это то, что любой препарат должен быть принят человеком до начала облучения, а не после.

А если учесть, что все такие лекарства токсичны, то можно считать, что борьба с последствиями радиации пока ни к одной победе не привела. Даже если фармакологические средства приняты вовремя, они обеспечивают защиту только от гамма-излучения и рентгеновских лучей, но не защищают от ионизирующего излучения протонов, альфа-частиц и быстрых нейтронов.

Даже если бы межпланетные полеты были реальностью, ученые все чаще говорят о том, что человеческий организм с чисто биологической точки зрения поджидают все больше опасностей. Одной из главных опасностей специалисты называют жесткое космическое радиационное излучение. На других планетах, например на том же Марсе, это излучение будет таким, что оно в разы ускорит наступление болезни Альцгеймера.

"Космическое излучение представляет собой очень значительную угрозу для будущих космонавтов. Возможность того, что космическое радиационное облучение может привести к возникновению проблем со здоровьем, таких как рак, уже давно признана", - говорит Керри О"Банион, доктор неврологии из Медицинского центра при Университете Рочестера. "Наши опыты также достоверно установили, что жесткое излучение также провоцирует ускорение изменений в головном мозге, связанных с болезнью Альцгеймера".

По словам ученых, все космическое пространство буквально пронизано радиационным излучением, тогда как толстая земная атмосфера защищает нашу планету от него. Влияние радиации на себе могут ощутить уже и участники кратковременных полетов на МКС, хотя формально они находятся на низкой орбите, где защитный купол земной гравитации еще работает. Особенно активно радиационное излучение работает в те моменты, когда на Солнце происходят вспышки с последующими выбросами радиационных частиц.

Ученые говорят, что уже сейчас в НАСА вплотную работает над различными подходами, связанными с защитой человека от космической радиации. Впервые космическое ведомство начало финансирование "радиационных исследований" еще 25 лет назад. Сейчас значительная часть инициатив в этой области связана с исследованиями на предмет того, как уберечь будущих марсонавтов от жесткой радиации на Красной планете, где нет такого же атмосферного купола, как на Земле.

Уже сейчас специалисты говорят с очень большой вероятностью о том, что марсианская радиация провоцирует онкологические заболевания. Еще большие объемы излучения есть вблизи астероидов. Напомним, что миссию на астероид с участием человека НАСА планирует на 2021 год, а на Марс - не позже 2035 года. Полет на Марс и обратно с некоторым пребыванием там может занять около трех лет.

Как рассказали в НАСА, сейчас доказано, что космическая радиация провоцирует, помимо рака, также заболевания сердечно-сосудистой системы, костно-мышечной и эндокринной. Сейчас же специалисты из Рочестера выявили и еще один вектор опасности: в рамках исследований было установлено, что высокие дозы космической радиации провоцируют заболевания связанные с нейродегенерацией, в частности активируют процессы, которые способствуют развитию болезни Альцгеймера. Также специалисты изучили то, как космическая радиация влияет на центральную нервную систему человека.

Специалисты на основании опытов установили, что радиоактивные частицы в космосе имеют в своей структуре ядра атомов железа, которые имеют феноменальную проникающую способность. Именно поэтому защититься от них удивительно трудно.

На Земле исследователи проводили симуляцию космической радиации в американской Брукхевенской национальной лаборатории на Лонг-Айленде, где находится специальный ускоритель элементарных частиц. В процессе экспериментов исследователи определили, сроки, в течение которых болезнь возникает и прогрессирует. Впрочем, пока исследователи проводили эксперименты на лабораторных мышах, подвергая их дозам радиации, сопоставимых с теми, что получили бы люди во время полета на Марс. После опытов практически все мыши получили нарушения в работе когнитивной системы головного мозга. Также были отмечены нарушения в работе сердечно-сосудистой системы. В головном мозге выявлены очаги накопления бета-амилоида - белка, который является верным признаком надвигающейся болезни Альцгеймера.

Ученые говорят, что они пока не знают, как побороть космическую радиацию, но они уверены, что радиация - это тот фактор, который заслуживает самого серьезного внимания при планировании будущих космических полетов.

Текст, представленный ниже, нужно расценивать как личное мнение автора. Никакой секретной информацией (или доступом к ней) он не обладает. Всё, что изложено - это факты из открытых источников плюс немного здравого смысла («диванной аналитики», если угодно).

Научная фантастика - все эти бластеры и «пиу-пиу» в открытом космосе на крошечных одноместных истребителях - приучила человечество серьезно переоценивать доброжелательность Вселенной по отношению к теплым белковым организмам. Особенно сильно это проявляется, когда фантасты описывают путешествия к другим планетам. Увы, освоение «настоящего космоса» вместо привычных нам нескольких сотен «камэ» под защитой магнитного поля Земли будет более трудным предприятием, чем представлялось обывателю всего десятилетие назад.

Итак, вот мой главный тезис. Психологический климат и конфликты внутри экипажа далеко не главные проблемы, с которыми столкнется человек при организации пилотируемых полетов на Марс.

Главная проблема человека, путешествующего за пределы магнитосферы Земли - проблема с большой буквы «Р».

Что такое космическая радиация и почему мы не гибнем от нее на Земле

Ионизирующее излучение в космосе (за пределами нескольких сотен километров околоземельного пространства, которые человек действительно освоил) состоит из двух частей.

Излучение Солнца. Это, прежде всего, «солнечный ветер» - поток частиц, который постоянно «дует» во все стороны от светила и который чрезвычайно хорош для будущих космических парусников, потому что позволит им как следует разогнаться для путешествий за пределы Солнечной системы. Вот только для живых существ основная часть этого ветра не особо полезна. Замечательно, что нас от жесткой радиации защищают толстый слой атмосферы, ионосфера (та, где озоновые дыры), а еще мощное магнитное поле Земли.

Помимо ветра, который разлетается более-менее равномерно, наше светило еще периодически постреливает так называемыми солнечными вспышками. Последние представляют собой выбросы коронарного вещества Солнца. Они настолько серьезны, что время от времени приводят к проблемам у людей и техники даже на Земле, где самое веселье, повторюсь, недурственно экранируется.

Итак, у нас есть атмосфера и магнитное поле планеты. В уже довольно близком космосе, на расстоянии десятка-другого тысяч километров от Земли, солнечная вспышка (даже слабая, всего-то пара Хиросим), попав в корабль, гарантированно выведет его живую начинку из строя без малейших шансов на выживание. Помешать этому сегодня - при текущем уровне развития технологий и материалов - нам абсолютно нечем. По этой и только по этой причине многомесячное путешествие к Марсу человечеству придется отложить до времени, когда мы не решим эту проблему хотя бы частично. Также его придётся планировать в периоды наиболее спокойного солнца и много молиться всем техническим богам.

Космические лучи. Эти вездесущие злодейские штуки несут огромное количество энергии (больше, чем способен закачать в частицу БАК). Они приходят из других частей нашей галактики. Попадая в щит земной атмосферы, такой луч взаимодействует с ее атомами и расшибается на десятки менее энергичных частиц, которые каскадно порождают потоки еще менее энергичных (но тоже опасных) и в итоге все это великолепие проливается радиационным дождём на поверхность планеты. Примерно 15% от фонового излучения на Земле приходится на гостей из космоса. Чем выше ты живешь над уровнем моря, тем выше ловимая в течении жизни доза. И происходит это круглосуточно.

В качестве школьного упражнения попробуйте представить, что произойдёт с космическим кораблём и его «живой начинкой» в случае прямого попадании в них такого луча где-нибудь в открытом космосе. Лететь к Марсу, напомню, предстоит несколько месяцев, кораблик для этого предстоит строить здоровенный и вероятность описанного выше «контакта» (а то и не одного) достаточно велика. Просто пренебречь ею при длительных полетах с живым экипажем, увы, никак не получится.

Что ещё?

Помимо той радиации, что долетает до Земли от Солнца, есть ещё та солнечная радиация, которую магнитосфера планеты отталкивает, не пропускает внутрь и самое главное - накапливает*. Знакомьтесь, читатели. Это радиационный пояс Земли (РПЗ). Он же пояс Ван Аллена, как его называют за рубежом. Преодолеть его космонавтам предстоит что называется «на полных парах», чтобы не получить летальную дозу радиации всего за несколько часов. Повторный контакт с этим поясом - если мы вопреки здравому смыслу решим вернуть астронавтов с Марса на Землю - запросто может их добить.

*Значительная доля частиц пояса Ван Аллена приобретает опасную скорость уже в самом поясе. То есть он не только защищает нас от радиации извне, но еще и усиливает эту накопленную радиацию.

До сих пор речь шла об открытом космосе. Но не нужно забывать о том, что у Марса (в отличие от Земли) почти нет магнитного поля**, а атмосфера разрежённая и дохленькая, так что подвергаться воздействию этих негативных факторов люди будут не только в полёте.

**Ладно, немножко есть - в районе южного полюса.

Отсюда вывод. Жить будущим колонистам вероятнее всего предстоит не на поверхности планеты (как нам показывали в эпичном кино «Миссия на Марс»), а глубоко под ней.

Как быть?

Прежде всего, видимо, не питать иллюзий на скорое (в течение десятка-другого-третьего лет) разрешение всех этих проблем. Чтобы избежать гибели экипажа от лучевой болезни, нам придётся или вообще его туда не посылать и осваивать космос с помощью умных машин (кстати, не самое глупое решение), либо очень здорово поднапрячься, потому что, если я прав, то отправка людей на Марс с созданием там постоянной колонии - задача для одной страны (хоть США, хоть России, хоть Китая) в ближайшие полстолетия, а то и дольше совершенно неподъёмная. Один корабль для такой миссии обойдется в сумму, эквивалентную постройке и полному обслуживанию пары-тройки МКС (см. ниже).

И да, забыл сказать: пионеры Марса будут заведомо «смертниками», поскольку ни обратной дороги, ни долгой и комфортной жизни на Марсе обеспечить им в ближайшие полвека у нас, скорее всего, получится.

Как теоретически могла бы выглядеть миссия на Марс, имей мы для этого все ресурсы и технологии старушки-Земли? Сравните описанное ниже с тем, что вы видели в культовом фильме «Марсианин».

Миссия на Марс. Условно реалистичная версия

Во-первых, человечеству предстоит сильно напрячься и построить циклопических размеров космический корабль с мощной антирадиационной защитой, который сможет частично компенсировать адскую лучевую нагрузку на экипаж за пределами магнитного поля Земли и обеспечить доставку более-менее живых колонистов на Марс - в один конец.

Как может выглядеть такой корабль?

Это здоровенная махина в десятки (а лучше сотни) метров в поперечнике, обеспеченная собственным магнитным полем (сверхпроводящие электромагниты) и источниками энергии для его поддержания (атомные реакторы). Огромные размеры конструкции позволяют набить её изнутри поглощающими радиацию материалами (например, это может быть вспененный освинцованный пластик или герметичные контейнеры с простой либо «тяжелой» водой), которые десятилетиями (!) предстоит возить на орбиту и монтировать вокруг сравнительно крошечной капсулы жизнеобеспечения, куда потом мы поместим астронавтов.

Помимо размеров и дороговизны, марсианский корабль должен быть чертовски надежным и, главное, полностью автономным в плане управления. Чтобы доставить экипаж живым безопаснее всего будет погрузить его в искусственную кому и немного охладить (всего на пару-тройку градусов), чтобы замедлить метаболические процессы. В таком состоянии люди а) будут менее чувствительны к радиации, б) занимают меньше места и их дешевле экранировать от все той же радиации.

Очевидно, помимо корабля, нужен искусственный интеллект, способный уверенно доставить корабль на орбиту Марса, выгрузить колонистов на его поверхность, не повредив в процессе ни себя, ни груз, а потом ещё без участия людей вернуть астронавтов в сознание (уже на Марсе). Пока таких технологий у нас нет, но есть некоторая надежда, что подобный ИИ, а главное политические и экономические ресурсы для постройки описанного корабля, появятся у нас, допустим, ближе к середине столетия.

Хорошей новостью является то, что марсианский «паром» для колонистов вполне может быть многоразовым. Ему предстоит как челноку курсировать между Землёй и конечным пунктом, доставляя в колонию партии «живого груза» на замену выбывших «от естественных причин» людей. Для доставки «неживого» груза (еды, воды, воздуха и техники) противолучевая защита особо не нужна, так что марсианским грузовиком суперкорабль делать не обязательно. Он нужен исключительно для доставки колонистов и, возможно, семян растений / молоди сельскохозяйственных животных.

Во-вторых, нужно заранее забросить на Марс технику и запасы воды-еды-кислорода на экипаж из 6-12 человек на 12-15 лет (с учётом всех форс-мажоров). Это само по себе нетривиальная задачка, но допустим, что в ресурсах для ее решения мы не ограничены. Предположим, что войны и политические пертурбации Земли утихли, а на марсианскую миссию работает в едином порыве вся планета.

Забрасываемая на Марс техника, как вы уже должны догадаться, представляет собой полностью автономных роботов с искусственным интеллектом и питанием от компактных ядерных реакторов. Им предстоит методично в течение десятка-полутора лет отрыть сначала глубокий тоннель под поверхность красной планеты. Затем - ещё за несколько лет - небольшую сеть тоннелей, в которую предстоит втащить блоки жизнеобеспечения и запасы для будущей экспедиции, а потом все это герметично смонтировать в автономный подмарсианский поселок.

Метроподобное обиталище кажется оптимальным решением по двум причинам. Во-первых, оно экранирует космонавтов от космических лучей уже на самом Марсе. Во-вторых, из-за остаточной «марсотермальной» активности недр под поверхностью планеты на градус-другой теплее, чем снаружи. Это пригодится колонистам как для экономии энергии, так и для выращивания картошки на собственных фекалиях.

Уточним важный момент: строить колонию придётся в южном полушарии, где на планете ещё сохранилось остаточное магнитное поле.

Выходить на поверхность астронавтам в идеале не придётся вообще (Марс «вживую» они или не увидят совсем, или увидят один раз - при посадке). Всю работу на поверхности предстоит делать роботам, действиями которых колонистам предстоит руководить из своего бункера всю их недолгую жизнь (лет двадцать при удачном стечении обстоятельств).

В-третьих, надо поговорить о самом экипаже и методах его подбора.

Идеальной схемой последнего станет поиск по всей Земле… генетически идентичных (монозиготных) близнецов, один из которых только что превратился в донора органов (например, «удачно» попав в автокатастрофу). Звучит до крайности цинично, но пусть это не помешает вам дочитать текст до конца.

Что нам дает близнец-донор?

Погибший близнец даёт возможность своему брату (или сестре) стать идеальным колонистом на Марсе. Дело в том, что красный костный мозг первого, будучи доставлен на красную планету в дополнительно защищённом от радиации контейнере, можно будет перелить близнецу-астронавту. Тем самым повышаются шансы на выживание оного при лучевой болезни, остром лейкозе и других неприятностях, которые с колонистом весьма вероятно приключатся за годы миссии.

Итак, как выглядит процедура отсева будущих колонистов?

Отбираем несколько миллионов близнецов. Ждём, пока что-то происходит с одним из них, и делаем предложение оставшемуся. Набирается пул из, скажем, ста тысяч потенциальных кандидатов. Теперь внутри этого пула проводим итоговый отбор на психологическую совместимость и профпригодность.

Естественно, для расширения выборки отбирать астронавтов придётся по всей Земле, а не в одной или двух странах.

Ещё бы, конечно, здорово помогла некая технология выявления особо устойчивых к облучению кандидатов. Известно, что некоторая часть людей гораздо более устойчива к радиации, чем другая. Наверняка её можно выявить с помощью неких генетических маркеров. Если дополнить этим методом идею с близнецами, вместе они должны существенно повысить выживаемость марсианских колонистов.

Помимо этого, полезно было бы научиться переливать людям костный мозг в невесомости. Это не единственная штука, которую предстоит изобрести специально под этот проект, но, по счастью, время у нас ещё есть, а МКС пока что болтается на орбите Земли будто специально для отработки подобных технологий.

PS. Я должен специально оговориться, что принципиальным противником космических путешествий я не являюсь и верю, что рано или поздно «космос будет наш». Вопрос только в цене этого успеха, а также во времени, которое человечество затратит на отработку необходимых технологий. Мне кажется, под влиянием научной фантастики и массовой культуры многие из нас довольно беспечны в смысле понимания трудностей, которые на этом пути предстоит преодолеть. Чтобы несколько отрезвить эту часть «космооптимистов » и написан этот текст.

Во и частях я расскажу какие еще варианты у нас имеются в вопросе освоения космоса человеками в долгосрочной перспективе.



© dagexpo.ru, 2024
Стоматологический сайт