Цепь питания млекопитающих. Цепь питания в лесу. Общие понятия и примеры

20.10.2019

Круговорот веществ в природе и цепи питания

Все живые организмы являются активными участниками круговорота веществ на планете. Используя кислород, углекислый газ, воду, минеральные соли и другие вещества, живые организмы питаются, дышат, выделяют продукты деятельности, размножаются. После гибели их тела разлагаются на про­стейшие вещества и вновь возвращаются во внешнюю среду.

Перенос химических элементов из живых организмов в окружающую среду и обратно не прекращается ни на секунду. Так, растения (автотрофные организмы) забирают из внешней среды углекислый газ, воду и минеральные соли. При этом они создают органические вещества и выделяют кислород. Животные (гетеротрофные организмы), наоборот, вдыхают выделенный растениями кислород, а пое­дая растения, усваивают органические вещества и выделяют углекислый газ и остатки пищи. Грибы и бактерии используют в пищу останки живых организмов и превращают органические вещества в минеральные, которые накапливаются в почве и воде. А минеральные вещества снова усваиваются растениями. Так в природе осуществляется постоянный и бесконечный круговорот веществ и поддерживается непрерывность жизни.

Круговорот веществ и все связанные с ним превращения требуют постоянного притока энергии. Источником такой энергии является Солнце.

На земле растения поглощают углерод из атмосферы путем фотосинтеза. Животные поедают растения, передавая углерод вверх по пищевой цепи, о которой мы расскажем чуть позже. Когда растения и животные умирают, то они передают углерод обратно земле.

На поверхности океана двуокись углерода из атмосферы растворяется в воде. Фитопланктон поглощает ее для фотосинтеза. Животные, поедающие планктон, выдыхают углерод в атмосферу и тем самым передают дальше по цепи питания. После гибели фитопланктона он может перерабатываться в поверхностных водах или оседать на дно океана. За миллионы лет этот процесс превратил ложе океана в богатый резервуар углерода на планете. Холодные течения переносят углерод к поверхности. При нагревании воды он освобождается в виде газа и попадает в атмосферу, продолжая цикл.

Вода постоянно совершает круговорот между морями, атмосферой и сушей. Под лучами солнца она испаряется и поднимается в воздух. Там капельки воды собираются в облака и тучи. Они выпадают на землю дождем, снегом или градом, которые снова превращаются в воду. Вода впитывается в землю, возвращается в моря, реки и озера. И все начинается сначала. Так происходит круговорот воды в природе.

Большую часть воды испаряет Мировой океан. Вода в нем соленая, а та, которая испаряется с его поверхности, - пресная. Таким образом, океан - мировая «фабрика» пресной воды, без которой жизнь на Земле невозможна.

ТРИ СОСТОЯНИЯ ВЕЩЕСТВА . Различают три агрегатных состояния вещества - твердое, жидкое и газообразное. Они зависят от температуры и давления. В повседневной жизни мы можем наблюдать во всех трех этих состояниях воду. Влага испаряется и переходит из жидкого состояния в газообразное, то есть водяной пар. Он конденсируется и превращается в жидкость. При минусовых температурах вода замерзает и переходит в твердое состояние - лед.

Круговорот сложных веществ в живой природе включает пищевые цепи. Это линейная замкнутая последовательность, в которой каждое живое существо питается кем-то или чем-то и само служит питанием для другого организма. Внутри пастбищной пищевой цепи органические вещества создаются автотрофными организмами, например растениями. Растения поедаются животными, которых, в свою очередь, съедают другие животные. Грибы-редуценты разлагают органические останки и служат началом детритной трофической цепи.

Каждое звено пищевой цепи называется трофическим уровнем (от греческого слова «трофос» - «питание»).
1.Продуценты, или производители, производят органические вещества из неорганических. К продуцентам относятся растения и некоторые бактерии.
2. Консументы, или потребители, потребляют готовые органические вещества. Консументы 1-го порядка питаются продуцентами. Консументы 2-го порядка питаются консументами 1-го порядка. Консументы 3-го порядка питаются консументами 2-го порядка и т. д.
3. Редуценты, или разрушители, разрушают, то есть минерализуют органические вещества до неорганических. К редуцентам относятся бактерии и грибы.

ДЕТРИТНЫЕ ЦЕПИ ПИТАНИЯ . Существует два основных типа пищевых цепей - пастбищные (цепи выедания) и детритные (цепи разложения). Основу пастбищной пищевой цепи составляют автотрофные организмы, которых поедают животные. А в детритных трофических цепях большая часть растений не потребляется травоядными животными, а отмирает и затем разлагается сапротрофными организмами (например, дождевыми червями) и минерализуется. Таким образом, детритные трофические цепи начинаются от детрита, а затем идут к детритофагам и к их потребителям - хищникам. На суше преобладают именно такие цепи.

ЧТО ТАКОЕ ЭКОЛОГИЧЕСКАЯ ПИРАМИДА ? Экологическая пирамида - это графическое изображение соотношения различных трофических уровней пищевой цепи. Пищевая цепь не может содержать больше 5-6 звеньев, потому что при переходе на каждое следующее звено 90 % энергии теряется. Основное правило экологической пирамиды основывается на 10 %. Так, например, для образования 1 кг мас­сы дельфину нужно съесть около 10 кг рыбы, а им, в свою очередь, 100 кг корма - водных позвоночных, которым для образования такой массы необходимо съесть 1000 кг водорослей и бактерий. Если в соответствующем масштабе изобразить эти величины в порядке их зависимости, то действительно образуется своеобразная пирамида.

ПИЩЕВЫЕ СЕТИ . Зачастую взаимодействие между живыми организмами в природе более сложно, и визуально это похоже на сеть. Организмы, особенно хищники, могут питаться самыми разными существами, причем из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя пищевые сети.

В природе любой вид, популяция и даже отдельная особь живут не изолированно друг от друга и среды своего обитания, а, напротив, испытывают многочисленные взаимные влияния. Биотические сообщества или биоценозы - сообщества взаимодействующих живых организмов, представляющие собой устойчивую систему, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов.

Для биоценоза характерны определенные структуры : видовая, пространственная и трофическая.

Органические компоненты биоценоза неразрывно связаны с неорганическими - почвой, влагой, атмосферой, образуя вместе с ними устойчивую экосистему - биогеоценоз .

Биогеноценоз – саморегулирующаяся экологическая система, образованная совместно обитающими и взаимодействующими между собой и с неживой природой, популяциями разных видов в относительно однородных условиях среды.

Экологические системы

Функциональные системы, включающие в себя сообщества живых организмов разных видов и их среду обитания. Связи между компонентами экосистемы возникают, прежде всего, на основе пищевых взаимоотношений и способов получения энергии.

Экосистема

Совокупность видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей средой таким образом, что такое сообщество может сохраняться и функционировать необозримо длительное время. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз ), животных (зооценоз ), микроорганизмов (микробоценоз ).

Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу , обладающую устойчивостью и другими свойствами экосистемы.

Существование экосистемы возможно благодаря постоянному притоку энергии извне - таким источником энергии, как правило, является солнце, хотя не для всех экосистем это справедливо. Устойчивость экосистемы обеспечивается прямыми и обратными связями между ее компонентами, внутренним круговоротом веществ и участием в глобальных круговоротах.

Учение о биогеоценозах разработано В.Н. Сукачевым. Термин «экосистема » введен в употребление английским геоботаником А. Тенсли в 1935 г., термин «биогеоценоз » - академиком В.Н. Сукачевым в 1942 г. В биогеоценозе обязательно наличие в качестве основного звена растительного сообщества (фитоценоз), обеспечивающего потенциальную бессмертность биогеоценоза за счет энергии, вырабатываемой растениями. Экосистемы могут не содержать фитоценоз.

Фитоценоз

Растительное сообщество, исторически сложившееся в результате сочетания взаимодействующих растений на однородном участке территории.

Его характеризуют :

- определенный видовой состав,

- жизненные формы,

- ярусность (надземная и подземная),

- обилие (частота встречаемости видов),

- размещение,

- аспект (внешний вид),

- жизненность,

- сезонные изменения,

- развитие (смена сообществ).

Ярусность (этажность)

Один из характерных признаков растительного сообщества, заключающийся как бы в поэтажном его разделении как в надземном, так и в подземном пространстве.

Надземная ярусность позволяет лучше использовать свет, а подземная - воду и минеральные вещества. Обычно в лесу можно выделить до пяти ярусов: верхний (первый) - высокие деревья, второй - невысокие деревья, третий - кустарники, четвертый - травы, пятый - мхи.

Подземная ярусность - зеркальное отражение надземной: глубже всех уходят корни деревьев, близ поверхности почвы расположены подземные части мхов.

По способу получения и использования питательных веществ все организмы делятся на автотрофы и гетеротрофы . В природе возникает непрерывный круговорот биогенных веществ, необходимых для жизни. Химические вещества извлекаются автотрофами из окружающей среды и через гетеротрофы вновь в нее возвращаются. Этот процесс принимает очень сложные формы. Каждый вид использует лишь часть содержащейся в органическом веществе энергии, доводя его распад до определенной стадии. Таким образом, в процессе эволюции в экологических системах сложились цепи и сети питания .

Большинство биогеоценозов имеют сходную трофическую структуру . Основу их составляют зеленые растения - продуценты. Обязательно присутствуют растительноядные и плотоядные животные: потребители органического вещества - консументы и разрушители органических остатков - редуценты .

Количество особей в пищевой цепи последовательно уменьшается, численность жертв больше численности их потребителей, так как в каждом звене пищевой цепи при каждом переносе энергии 80-90% ее теряется, рассеиваясь в виде теплоты. Поэтому число звеньев в цепи ограничено (3-5).

Видовое разнообразие биоценоза представлено всеми группами организмов - продуцентами, консументами и редуцентами.

Нарушение какого-либо звена в цепи питания вызывает нарушение биоценоза в целом. Например, вырубка леса приводит к изменению видового состава насекомых, птиц, а, следовательно, и зверей. На безлесном участке будут складываться другие цепи питания и сформируется другой биоценоз, что займет не один десяток лет.

Цепь питания (трофическая или пищевая )

Взаимосвязанные виды, последовательно извлекающие органическое вещество и энергию из исходного пищевого вещества; при этом каждое предыдущее звено цепи является пищей для последующего.

Цепи питания в каждом природном участке с более или менее однородными условиями существования составлены комплексами взаимосвязанных видов, питающимися друг другом и образующими самоподдерживающуюся систему, в которой осуществляется круговорот веществ и энергии.

Компоненты экосистемы:

- Продуценты - автотрофные организмы (в основном зеленые растения) - единственные производители органического вещества на Земле. Богатое энергией органическое вещество в процессе фотосинтеза синтезируется из бедных энергией неорганических веществ (Н 2 0 и С0 2).

- Консументы - растительноядные и плотоядные животные, потребители органического вещества. Консументы могут быть растительноядными, когда они непосредственно используют продуценты, или плотоядными, когда они питаются другими животными. В цепи питания они чаще всего могут иметь порядковый номер с I по IV .

- Редуценты - гетеротрофные микроорганизмы (бактерии) и грибы - разрушители органических остатков, деструкторы. Их еще называют санитарами Земли.

Трофический (пищевой) уровень - совокупность организмов, объединяемых типом питания. Представление о трофическом уровне позволяет понять динамику потока энергии в экосистеме.

  1. первый трофический уровень всегда занимают продуценты (растения),
  2. второй - консументы I порядка (растительноядные животные),
  3. третий - консументы II порядка - хищники, питающиеся растительноядными животными),
  4. четвертый - консументы III порядка (вторичные хищники).

Различают следующие виды пищевых цепей:

В пастбищной цепи (цепи выедания ) основным источником пищи служат зеленые растения. Например: трава -> насекомые -> земноводные -> змеи -> хищные птицы.

- детритные цепи (цепи разложения) начинаются с детрита - отмершей биомассы. Например: листовой опад -> дождевые черви -> бактерии. Особенностью детритных цепей является также то, что в них часто продукция растений не потребляется непосредственно растительноядными животными, а отмирает и минерализуется сапрофитами. Детритные цепи характерны также для экосистем океанических глубин, обитатели которых питаются мертвыми организмами, опустившимися вниз из верхних слоев воды.

Сложившиеся в процессе эволюции взаимоотношения между видами в экологических системах, при которых многие компоненты питаются разными объектами и сами служат пищей различным членам экосистемы. Упрощенно пищевую сеть можно представить как систему переплетающихся пищевых цепей .

Организмы разных пищевых цепей, получающие пищу через равное число звеньев этих цепей, находятся на одном трофическом уровне . В то же время разные популяции одного и того же вида, входящие в различные пищевые цепи, могут находиться на разных трофических уровнях . Соотношение различных трофических уровней в экосистеме можно изобразить графически в виде экологической пирамиды .

Экологическая пирамида

Способ графического отображения соотношения различных трофических уровней в экосистеме - бывает трех типов :

Пирамида численности отражает численность организмов на каждом трофическом уровне;

Пирамида биомасс отражает биомассу каждого трофического уровня;

Пирамида энергии показывает количество энергии, прошедшее через каждый трофический уровень в течение определенного промежутка времени.

Правило экологической пирамиды

Закономерность, отражающая прогрессивное уменьшение массы (энергии, числа особей) каждого последующего звена пищевой цепи.

Пирамида численности

Экологическая пирамида, отражающая число особей на каждом пищевом уровне. В пирамиде чисел не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ, однако всегда прослеживается главная тенденция - уменьшение числа особей от звена к звену. Например, в степной экосистеме численность особей распределяется так: продуценты - 150000, травоядные консументы - 20000, плотоядные консументы - 9000 экз./ар. Биоценоз луга характеризуется следующей численностью особей на площади 4000 м 2: продуценты - 5 842 424, растительноядные консументы I порядка - 708 624, плотоядные консументы II порядка - 35 490, плотоядные консументы III порядка - 3.

Пирамида биомасс

Закономерность, согласно которой количество растительного вещества, служащего основой цепи питания (продуцентов), примерно в 10 раз больше, чем масса растительноядных животных (консументов I порядка), а масса растительноядных животных в 10 раз больше, чем плотоядных (консументов II порядка), т. е. каждый последующий пищевой уровень имеет массу в 10 раз меньшую, чем предыдущий. В среднем из 1000 кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить 10 кг своей биомассы, вторичные хищники - 1 кг.

Пирамида энергии

выражает закономерность, согласно которой поток энергии постепенно уменьшается и обесценивается при переходе от звена к звену в цепи питания. Так, в биоценозе озера зеленые растения - продуценты - создают биомассу, содержащую 295,3 кДж/см 2 , консументы I порядка, потребляя биомассу растений, создают свою биомассу, содержащую 29,4 кДж/см 2 ; консументы II порядка, используя в пищу консументов I порядка, создают свою биомассу, содержащую 5,46 кДж/см 2 . Потеря энергии при переходе от консументов I порядка к консументам II порядка, если это теплокровные животные, увеличивается. Это объясняется тем, что у данных животных много энергии уходит не только на построение своей биомассы, но и на поддержание постоянства температуры тела. Если сравнить выращивание теленка и окуня, то одинаковое количество затраченной пищевой энергии даст 7 кг говядины и лишь 1 кг рыбы, так как теленок питается травой, а окунь-хищник - рыбой.

Таким образом , первые два типа пирамид имеют ряд существенных недостатков:

Пирамида биомасс отражает состояние экосистемы на момент отбора пробы и, следовательно, показывает соотношение биомассы в данный момент и не отражает продуктивность каждого трофического уровня (т. е. его способность образовывать биомассу в течение определенного промежутка времени). Поэтому в том случае, когда в число продуцентов входят быстрорастущие виды, пирамида биомасс может оказаться перевернутой.

Пирамида энергии позволяет сравнить продуктивность различных трофических уровней, поскольку учитывает фактор времени. Кроме того, она учитывает разницу в энергетической ценности различных веществ (например, 1 г жира дает почти в два раза больше энергии, чем 1 г глюкозы). Поэтому пирамида энергии всегда суживается кверху и никогда не бывает перевернутой.

Экологическая пластичность

Степень выносливости организмов или их сообществ (биоценозов) к воздействию факторов среды. Экологически пластичные виды имеют широкую норму реакции , т. е. широко приспособлены к разной среде обитания (рыбы колюшка и угорь, некоторые простейшие живут как в пресных, так и в соленых водах). Узкоспециализированные виды могут существовать лишь в определенной среде: морские животные и водоросли - в соленой воде, речные рыбы и растения лотос, кувшинка, ряска обитают только в пресной воде.

В целом экосистема (биогеоценоз) характеризуется следующими показателями :

Видовым разнообразием,

Плотностью видовых популяций,

Биомассой.

Биомасса

Общее количество органического вещества всех особей биоценоза или вида с заключенной в нем энергией. Биомассу выражают обычно в единицах массы в пересчете на сухое вещество единицы площади или объема. Биомассу можно определить отдельно для животных, растений или отдельных видов. Так, биомасса грибов в почве составляет 0,05-0,35 т/га, водорослей - 0,06-0,5, корней высших растений - 3,0-5,0, дождевых червей - 0,2-0,5, позвоночных животных - 0,001-0,015 т/га.

В биогеоценозах различают первичную и вторичную биологическую продуктивность :

ü Первичная биологическая продуктивность биоценозов - общая суммарная продуктивность фотосинтеза, представляющая собой результат деятельности автотрофов - зеленых растений, например, сосновый лес 20- 30-летнего возраста за год производит 37,8 т/га биомассы.

ü Вторичная биологическая продуктивность биоценозов - общая суммарная продуктивность гетеротрофных организмов (консументов), которая образуется за счет использования веществ и энергии, накопленных продуцентами.

Популяции. Структура и динамика численности.

Каждый вид на Земле занимает определенный ареал , так как он способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида могут существенно отличаться, что приводит к распаду вида на элементарные группировки особей - популяции.

Популяция

Совокупность особей одного вида, занимающих обособленную территорию в пределах ареала вида (с относительно однородными условиями обитания), свободно скрещивающихся друг с другом (имеющих общий генофонд) и изолированных от других популяций данного вида, обладающих всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды. Важнейшими характеристиками популяции являются ее структура (возрастной, половой состав) и динамика численности.

Под демографической структурой популяции понимают ее половой и возрастной состав.

Пространственная структура популяции - это особенности размещения особей популяции в пространстве.

Возрастная структура популяции связана с соотношением особей различных возрастов в популяции. Особи одного возраста объединяют в когорты - возрастные группы.

В возрастной структуре популяций растений выделяют следующие периоды :

Латентный - состояние семени;

Прегенеративный (включает состояния проростка, ювенильного растения, имматурного и виргинильного растений);

Генеративный (обычно подразделяется на три подпериода - молодые, зрелые и старые генеративные особи);

Постгенеративный (включает состояния субсенильного, сенильного растений и фазу отмирания).

Принадлежность к определенному возрастному состоянию определяется по биологическому возрасту - степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков.

В популяциях животных также можно выделить различные возрастные стадии . Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии:

Личинки,

Куколки,

Имаго (взрослого насекомого).

Характер возрастной структуры популяции зависит от типа кривой выживания, свойственной данной популяции.

Кривая выживания отражает уровень смертности в различных возрастных группах и представляет собой снижающуюся линию:

  1. Если уровень смертности не зависит от возраста особей, отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни (тип I ). Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии.
  2. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение вследствие естественной (физиологической) смертности (тип II ). Близкий к этому типу характер кривой выживания свойствен человеку (хотя кривая выживания человека несколько более пологая и является чем-то средним между типами I и II). Этот тип носит название типа дрозофилы : именно его демонстрируют дрозофилы в лабораторных условиях (не поедаемые хищниками).
  3. Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие «критический» возраст, демонстрируют низкую смертность и доживают до старших возрастов. Тип носит название типа устрицы (тип III ).

Половая структура популяции

Соотношение полов имеет прямое отношение к воспроизводству популяции и ее устойчивости.

Выделяют первичное, вторичное и третичное соотношение полов в популяции:

- Первичное соотношение полов определяется генетическими механизмами - равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX - женского. В этом случае первичное соотношение полов 1:1, т. е. равновероятно.

- Вторичное соотношение полов - это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим Х- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 °С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных - преимущественно самки.

- Третичное соотношение полов - соотношение полов среди взрослых животных.

Пространственная структура популяции отражает характер размещения особей в пространстве.

Выделяют три основных типа распределения особей в пространстве:

- единообразное или равномерное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга); встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (например, у хищных рыб);

- конгрегационное или мозаичное («пятнистое», особи размещаются в обособленных скоплениях); встречается намного чаше. Оно связано с особенностями микросреды или поведения животных;

- случайное или диффузное (особи распределены в пространстве случайным образом) - можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремления к объединению в группы (например, у жука в муке).

Численность популяции обозначается буквой N. Отношение прироста N к единице времени dN / dt выражает мгновенную скорость изменения численности популяции, т. е. изменение численности в момент времени t. Прирост популяции зависит от двух факторов - рождаемости и смертности при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции :

Устойчивость популяции

Это ее способность находиться в состоянии динамического (т. е. подвижного, изменяющегося) равновесия со средой: изменяются условия среды - изменяется и популяция. Одним из важнейших условий устойчивости является внутреннее разнообразие. Применительно к популяции это механизмы поддержания определенной плотности популяции.

Выделяют три типа зависимости численности популяции от ее плотности .

Первый тип (I) - самый распространенный, характеризуется уменьшением роста популяции при увеличении ее плотности, что обеспечивается различными механизмами. Например, для многих видов птиц характерны снижение рождаемости (плодовитости) при увеличении плотности популяции; увеличение смертности, снижение сопротивляемости организмов при повышенной плотности популяции; изменение возраста наступления половой зрелости в зависимости от плотности популяции.

Третий тип ( III ) характерен для популяций, в которых отмечается «эффект группы», т. е. определенная оптимальная плотность популяции способствует лучшему выживанию, развитию, жизнедеятельности всех особей, что присуще большинству групповых и социальных животных. Например, для возобновления популяций разнополых животных как минимум необходима плотность, обеспечивающая достаточную вероятность встречи самца и самки.

Тематические задания

А1. Биогеоценоз образован

1) растениями и животными

2) животными и бактериями

3) растениями, животными, бактериями

4) территорией и организмами

А2. Потребителями органического вещества в лесном биогеоценозе являются

1) ели и березы

2) грибы и черви

3) зайцы и белки

4) бактерии и вирусы

А3. Продуцентами в озере являются

2) головастики

А4. Процесс саморегуляции в биогеоценозе влияет на

1) соотношение полов в популяциях разных видов

2) численность мутаций, возникающих в популяциях

3) соотношение хищник – жертва

4) внутривидовую конкуренцию

А5. Одним из условий устойчивости экосистемы может служить

1) ее способность к изменениям

2) разнообразие видов

3) колебания численности видов

4) стабильность генофонда в популяциях

А6. К редуцентам относятся

2) лишайники

4) папоротники

А7. Если общая масса полученной потребителем 2-го порядка равна 10 кг, то какова была совокупная масса продуцентов, ставших источником пищи для данного потребителя?

А8. Укажите детритную пищевую цепь

1) муха – паук – воробей – бактерии

2) клевер – ястреб – шмель – мышь

3) рожь – синица – кошка – бактерии

4) комар – воробей – ястреб – черви

А9. Исходным источником энергии в биоценозе является энергия

1) органических соединений

2) неорганических соединений

4) хемосинтеза

1) зайцами

2) пчелами

3) дроздами-рябинниками

4) волками

А11. В одной экосистеме можно встретить дуб и

1) суслика

3) жаворонка

4) синий василек

А12. Сети питания – это:

1) связи между родителями и потомством

2) родственные (генетические) связи

3) обмен веществ в клетках организма

4) пути передачи веществ и энергии в экосистеме

А13. Экологическая пирамида чисел отражает:

1) соотношение биомасс на каждом трофическом уровне

2) соотношение масс отдельного организма на разных трофических уровнях

3) структуру пищевой цепи

4) разнообразие видов на разных трофических уровнях


Пищевая цепь – это последовательное превращение элементов неорганической природы (биогенных и др.) с помощью растений и света в органические вещества (первичную продукцию), а последних – животными организмами на последующих трофических (пищевых) звеньях (ступенях) в их биомассу.

Пищевая цепь начинается с солнечной энергии, и каждое звено в цепи представляет собой изменение энергии. Все пищевые цепи в сообществе образуют трофические отношения.

Между компонентами экосистемы существуют разнообразные связи, и в первую очередь их связывает воедино поток энергии и круговорот вещества. Каналы, по которым течет через сообщество энергия, носят имя цепей питания. Энергия солнечного луча, падающего на верхушки деревьев или на поверхность пруда, улавливается зелеными растениями — будь то огромные деревья или крошечные водоросли, — и используется ими в процессе фотосинтеза. Эта энергия идет на рост, развитие и размножение растений. Растения, как производителей органического вещества, называют продуцентами. Продуценты, в свою очередь, служат источником энергии для тех, кто питается растениями, а, в конечном счете, для всего сообщества.

Первыми потребителями органического вещества являются растительноядные животные — консументы I порядка. Хищники, поедающие растительноядных жертв, выступают в роли консументов II порядка. При переходе от одного звена к другому энергия неизбежно теряется, поэтому в пищевой цепи редко бывает более 5-6 участников. Завершают круговорот редуценты — бактерии и грибы разлагают трупы животных, остатки растений, превращая органику в минеральные вещества, которые снова усваиваются продуцентами.

В пищевую цепь входят все растения и животные, а также содержащиеся в воде химические элементы, необходимые для фотосинтеза. Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища - потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды . В воде пищевая цепь начинается с мель- чайших растительных организмов — водорослей, живущих в эвфотической зоне и использующих солнечную энергию для синтеза органических веществ из растворенных в воде неорганических химических питательных веществ и угле- кислоты. В процессе переноса энергии пищи от ее источника — растений — через ряд организмов, происходящих путем поедания одних организмов другими, наблюдается рассеивание энергии, часть которой переходит в тепло. При каждом очередном переходе от одного трофического звена (ступени) к другому теряется до 80-90% потенциальной энергии. Это ограничивает возможное число этапов, или звеньев цепи, обычно до четырех-пяти. Чем короче пищевая цепь, тем большее количество доступной энергии сохраняется.

В среднем из 1 тыс. кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить из этого количества 10 кг своей биомассы, а вторичные хищники только 1 кг. Например, человек съедает большую рыбу. Ее пищу составляют мелкие рыбы, потребляющие зоопланктон, который живет за счет фитопланктона, улавливающего солнечную энергию.

Таким образом, для построения 1 кг тела человека требуется 10 тыс. кг фитопланктона. Следовательно, масса каждого последующего звена в цепи прогрессивно уменьшается. Эта закономерность носит название правила экологической пирамиды. Различают пирамиду чисел, отражающую число особей на каждом этапе пищевой цепи, пирамиду биомассы — количество синтезированного на каждом уровне органического вещества и пирамиду энергии — количество энергии в пище. Все они имеют одинаковую направленность, различаясь в абсолютном значении цифровых величин. В реальных условиях цепи питания могут иметь разное число звеньев. Кроме того, цепи питания могут перекрещиваться, образуя сети питания. Почти все виды животных, за исключением очень специализированных в пищевом отношении, используют не один какой-нибудь источник пищи, а несколько). Чем больше видовое разнообразие в биоценозе, тем он устойчивее. Так, в цепи питания растения-заяц-лиса — всего три звена. Но лиса питается не только зайцами, но и мышами и птицами. Общая закономерность состоит в том, что в начале пищевой цепи всегда находятся зеленые растения, а в конце — хищники. С каждым звеном в цепи организмы становятся крупнее, они медленнее размножаются, их число уменьшается. Виды, занимающие положение низших звеньев, хотя и обеспечены питанием, но сами интенсивно потребляются (мышей, например, истребляют лисы, волки, совы). Отбор идет в направлении увеличения плодовитости. Такие организмы превращаются в кормовую базу высших животных без всяких перспектив прогрессивной эволюции.

В любой геологической эпохе с наибольшей скоростью эволюционировали организмы, стоящие на высшем уровне в пищевых взаимоотношениях, например в девоне — кистепрые рыбы — рыбоядные хищники; в каменноугольном периоде — хищные стегоцефалы. В пермском — рептилии, охотившиеся на стегоцефалов. На протяжении всей мезозойской эры млекопитающие истреблялись хищными рептилиями и только вследствие вымирания последних в конце мезозоя заняли господствующее положение, дав большое число форм.

Пищевые отношения — самый важный, но не единственный тип отношений между видами в биоценозе. Один вид может влиять на другой разными путями. Организмы могут поселяться на поверхности или внутри тела особей другого вида, могут формировать среду обитания для одного или нескольких видов, влиять на движение воздуха, температуру, освещенность окружающего пространства. Примеры связей, влияющих на местообитания видов, многочисленны. Морские желуди — морские ракообразные, ведущие сидячеприкрепленный образ жизни, нередко поселяются на коже китов. Личинки многих мух живут в коровьем навозе. Особенно большая роль в создании или изменении среды для других организмов, принадлежит растениям. В зарослях растений, будь то лес или луг, температура колеблется в меньшей степени, чем на открытых пространствах, а влажность выше.
Нередко один вид участвует в распространении другого. Животные переносят семена, споры, пыльцу растений, а также других более мелких животных. Семена растений могут захватываться животными при случайном соприкосновении, особенно если семена или соплодия имеют специальные зацепки, крючки (череда, лопух). При поедании плодов, ягод, не поддающихся перевариванию, семена выделяются вместе с пометом. Млекопитающие, птицы и насекомые переносят на своем теле многочисленных клещей.

Все эти многообразные связи обеспечивают возможность существования видов в биоценозе, удерживают их друг возле друга, превращая в стабильные саморегулирующиеся сообщества.

Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами . Чаще всего на этом месте находятся растения , грибы , водоросли . Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия . В процессе питания потенциальная энергия пищи переходит к её потребителю.

Все виды, образующие пищевую цепь, существуют за счет органического вещества, созданного зелеными растениями. При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем.

Суммарно лишь около 1% лучистой энергии Солнца, падающей на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ и может быть использовано в дальнейшем гетеротрофными организмами при питании. Когда животное поедает растение, большая часть энергии, содержащейся в пище, расходуется на различные процессы жизнедеятельности, превращаясь при этом в тепло и рассеиваясь. Только 5-20% энергии пищи переходит во вновь построенное вещество тела животного. Если хищник поедает травоядное животное, то снова теряется большая часть заключенной в пище энергии. Вследствие таких больших потерь полезной энергии пищевые цепи не могут быть очень длинными: обычно они состоят не более чем из 3-5 звеньев (пищевых уровней).

Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз больше, чем общая масса растительноядных животных, а масса каждого из последующих звеньев пищевой цепи также уменьшается. Эту очень важную закономерность называют правилом экологической пирамиды.

При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

В Байкале пищевая цепь в пелагиали состоит из пяти звеньев: водоросли — эпишура — мак- рогектопус — рыбы — нерпа или хищные рыбы (ленок, таймень, взрослые особи омуля и др.). Человек участвует в этой цепи как последнее звено, но он может потреблять продукцию и более низких звеньев, например, рыб или даже беспозвоночных при использовании в пищу ракообразных, водных растений и т. п. Короткие трофические цепи менее устойчивы и подвержены большим колебаниям, чем длинные и сложные по структуре.

2. УРОВНИ И СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ПИЩЕВОЙ ЦЕПИ

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическими уровнями .

Начальным уровнем (звеном) всякой трофической (пищевой) цепи в водоеме являются растения (водоросли). Растения никого не поедают (за исключением небольшого числа видов насекомоядных растений — росянка, жирянка, пузырчатка, непентес и некоторые другие), напротив, они являются источником жизни для всех животных организмов. Поэтому первой ступенью цепи хищников являются травоядные (пастбищные) животные. Следом за ними идут мелкие плотоядные, питающиеся травоядными, затем звено более крупных хищников. В цепи каждый последующий организм крупнее предыдущего. Цепи хищников способствуют устойчивости трофической цепочки.

Пищевая цепь сапрофитов – это замыкающее звено трофической цепочки. Сапрофиты питаются мертвыми организмами. Химические вещества, образующиеся при разложении мертвых организмов, снова потребляются растениями – организмами-продуцентами, с которых начинаются все трофические цепи.

3. ТИПЫ ТРОФИЧЕСКИХ ЦЕПЕЙ

Есть несколько классификаций трофических цепей.

По первой классификации существуют в Природе три трофические цепи (трофическая — значит, обусловленная Природой для разрушения).

Первая трофическая цепь объединяет следующие свободно живущие организмы:

    растительноядные животные;

    хищники — плотоядные животные;

    всеядные, включая человека.

    Основной принцип трофической цепи: «Кто кого ест?»

    Вторая трофическая цепь объединяет живые существа, которые метаболизируют все и всех. Эту задачу выполняют редуценты. Они доводят сложные вещества погибших организмов до простых веществ. Свойство биосферы — все представители биосферы смертны. Биологическая задача редуцентов — разлагать умерших.

    По второй классификации, существует два основных типа трофических цепей — пастбищные и детритные.

    В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, судак, питающийся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

    В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) значит, часть продукции растений и животных также поступает в детритные трофические цепи.

    ЗАКЛЮЧЕНИЕ

    Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.

    Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

    Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах — это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть .

    Организмы любого вида являются потенциальной пищей многих других видов

    трофические сети в биоценозах очень сложные, и создается впечатление, что энергия, поступающая в них, может долго мигрировать от одного организма к другому. На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток; она может передаваться не более, чем через 4-6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания. Место каждого звена в цепи питания называют трофическим уровнем. Первый трофический уровень — это всегда продуценты, создатели органической массы; растительные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм — к третьему; потребляющие других плотоядных — к четвертому и т.д. Таким образом, различают консументов первого, второго и третьего порядков, занимающих разные уровни в цепях питания. Естественно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания включаются в пищевые цепи на разных трофических уровнях.

    СПИСОК ЛИТЕРАТУРЫ

  1. Акимова Т.А., Хаскин В.В. Экология. Учебное пособие. –М.: ДОНИТИ, 2005.

    Моисеев А.Н. Экология в современном мире // Энергия. 2003. № 4.

Для существования живых организмов необходимы энергия и питательные вещества. Автотрофы трансформируют лучистую энергию Солнца в процессе фотосинтеза, синтезируя из углекислого газа и воды органические вещества.

Гетеротрофы используют эти органические вещества в процессе питания, разлагая их в конечном счете вновь до углекислого газа и воды, а накопленная в них энергия расходуется на различные процессы жизнедеятельности организмов. Таким образом, световая энергия Солнца переходит в химическую энергию органических веществ, а далее в механическую и тепловую.

Все живые организмы в экологической системе по типу питания можно разделить на три функциональные группы - продуценты, консументы, редуценты.

1. Продуценты - это зеленые растения-автотрофы, производящие органические вещества из неорганических и способные аккумулировать солнечную энергию.

2. Консументы - это животные-гетеротрофы, потребляющие готовые органические вещества. Консументы I порядка могут использовать органические вещества растений (травоядные животные). Гетеротрофы, использующие животную пищу, подразделяются на консументы II, III порядков и т. д. (плотоядные животные). Все они используют энергию химических связей, запасенную в органических веществах продуцентами.

3. Редуценты - это гетеротрофные микроорганизмы, грибы, разрушающие и минерализующие органические остатки. Таким образом, редуценты как бы заканчивают круговорот веществ, образуя неорганические вещества для вступления в новый цикл.

Солнце обеспечивает постоянный приток энергии, а живые организмы в конечном счете рассеивают ее в виде тепла. В процессе жизнедеятельности организмов происходит постоянный круговорот энергии и веществ, причем каждый вид использует лишь часть содержащейся в органических веществах энергии. В результате возникают цепи питания - трофические цепи, пищевые цепи, представляющие собой последовательность видов, извлекающих органические вещества и энергию из исходного пищевого вещества, при этом каждое предыдущее звено становится пищей для следующего (рис. 98).

Рис. 98. Общая схема пищевой цепи

В каждом звене большая часть энергии расходуется в виде тепла, теряется, что ограничивает число звеньев в цепи. Но большинство цепей начинается растением, а заканчивается хищником, причем наиболее крупным. Редуценты разрушают органические вещества на каждом уровне и являются конечным звеном в пищевой цепи.

В связи с уменьшением энергии на каждом уровне идет уменьшение и биомассы. Трофическая цепь обычно имеет не более пяти уровней и представляет собой экологическую пирамиду, с широким основанием внизу и сужающуюся кверху (рис. 99).

Рис. 99. Упрощенная схема экологической пирамиды биомассы (1) и пирамиды чисел (2)

Правило экологической пирамиды отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Различают три типа экологических пирамид:

Пирамиду, отражающую число особей на каждом уровне пищевой цепи, - пирамида чисел;

Пирамиду биомассы органического вещества, синтезированного на каждом уровне, - пирамида массы (биомассы);

- пирамиду энергии, показывающей величину потока энергии. Обычно цепь питания состоит из 3-4 звеньев:

растение → заяц → волк;

растение → полевка → лисица → орел;

растение → гусеница → синица → ястреб;

растение → суслик → гадюка → орел.

Однако в реальных условиях в экосистемах различные цепи питания перекрещиваются между собой, образуя разветвленные сети. Почти все животные, за исключением редких специализированных видов, используют разнообразные источники пищи. Поэтому при выпадении одного звена в цепи не происходит нарушения в системе. Чем больше видовое разнообразие и богаче пищевые сети, тем устойчивее биоценоз.

В биоценозах различают два типа трофических сетей: пастбищную и детритную.

1. В пастбищном типе пищевой сети поток энергии идет от растений к растительноядным животным, а далее к консументам более высокого порядка. Это сеть выедания. Вне зависимости от величины биоценоза и места обитания растительноядные животные (наземные, водные, почвенные) пасутся, выедают зеленые растения и передают энергию на следующие уровни (рис. 100).

Рис. 100. Пастбищная сеть питания в наземном биоценозе

2. Если поток энергии начинается с мертвых растительных и животных остатков, экскрементов и идет к первичным детритофагам - редуцентам, частично разлагающим органические вещества, то такая трофическая сеть называется детритной, или сетью разложения (рис. 101). К первичным детритофагам относятся микроорганизмы (бактерии, грибы), мелкие животные (черви, личинки насекомых).

Рис. 101. Детритная пищевая цепь

В наземных биогеоценозах присутствуют оба типа трофической цепи. В водных сообществах преобладает цепь выедания. И в том и в другом случае энергия используется полностью.

Трофические цепи составляют основу взаимосвязей в живой природе, но пищевые связи - это не единственный вид взаимоотношений между организмами. Одни виды могут участвовать в распространении, размножении, расселении других видов, создавать соответствующие условия для их существования. Все многочисленные и разнообразные связи между живыми организмами и окружающей средой обеспечивают существование видов в устойчивой, саморегулирующейся экосистеме.

| |
§ 71. Экологические системы § 73. Свойства и структура биоценозов





















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: Формировать знания о составных компонентах биологического сообщества, об особенностях трофической структуры сообщества, о пищевых связях, которые отображают путь круговорота веществ, формировать понятия пищевая цепь, пищевая сеть.

Ход урока

1. Организационный момент.

2. Проверка и актуализация знаний по теме “Состав и структура сообщества”.

На доске: Наш мир – не случайность, не хаос, - есть система во всем.

Вопрос. О какой системе в живой природе говориться в данном высказывании?

Работа с терминами.

Задание. Вставьте пропущенные слова.

Сообщество организмов разных видов тесно взаимосвязанных между собой называют …………. . В его состав входят: растения, животные, …………. , …………. . Совокупность живых организмов и компонентов неживой природы, объединенных обменом веществ и энергии на однородном участке земной поверхности называют …………….. или …………… .

Задание. Выберите четыре компонента экосистемы: бактерии, животные, консументы, грибы, абиотический компонент, климат, редуценты, растения, продуценты, вода.

Вопрос. Каким образом связаны между собой живые организмы в экосистеме?

3. Изучение нового материала. Объяснение с использованием презентации.

4. Закрепление нового материала.

Задание № 1. Слайд № 20.

Определите и подпишите: продуцентов, консументов и редуцентов. Сравните цепи питания и установите сходство между ними. (в начале каждой цепи растительный корм, далее идет растительноядное животное, а в конце – хищное животное). Назовите способ питания растений и животных. (растения – автотрофы, т.е сами производят органическое вещество, животные – гетеротрофы – потребляют готовое органическое вещество).

Вывод: цепь питания – ряд последовательно питающихся друг другом организмов. Цепи питания начинаются с автотрофов – зеленых растений.

Задание № 2. Сравните две цепи питания, определите черты сходства и различия.

  1. Клевер - кролик - волк
  2. Растительный опад – дождевой червь – черный дрозд – ястреб - перепелятник (Первая пищевая цепь начинается с продуцентов – живых растений, вторая с растительных остатков – мертвой органики).

В природе существует два основных типа пищевых цепей: пастбищные (цепи выедания), которые начинаются с продуцентов, детритные (цепи разложения), которые начинаются с растительных и животных остатков, экскрементов животных.

Вывод: Следовательно первая цепь питания – пастбищная, т.к. начинается с продуцентов, вторая – детритная, т.к. начинается с мертвой органики.

Все компоненты пищевых цепей распределяются на трофические уровни. Трофический уровень – это звено в цепи питания.

Задание № 3. Составьте цепь питания, включив в нее перечисленные организмы: гусеница, кукушка, дерево с листьями, канюк, почвенные бактерии. Укажите продуцентов, консументов, редуцентов. (дерево с листьями - гусеница- кукушка-канюк – почвенные бактерии). Определите сколько трофических уровней содержит данная цепь питания (данная цепь состоит из пяти звеньев, следовательно пять – трофических уровней). Определите какие организмы расположены на каждом трофическом уровне. Сделайте вывод.

  • Первый трофический уровень – зеленые растения (продуценты),
  • Второй трофический уровень – растительноядные животные (консументы 1 порядка)
  • Третий трофический уровень – мелкие хищники (консументы 2 порядка)
  • Четвертый трофический уровень – крупные хищники (консументы 3 порядка)
  • Пятый трофический уровень – организмы, потребляющие мертвое органическое вещество – почвенные бактерии, грибы (редуценты)

В природе каждый организм использует не один источник питания, а несколько, то в биогеоценозах пищевые цепи переплетаются и образуют пищевую сеть . Для любого сообщества можно составить схему всех пищевых взаимосвязей организмов и эта схема будет иметь вид сети (пример пищевой сети рассмотрим на рис. 62 в учебнике биологии автора А.А.Каменского и др.)

5. Отработка полученных знаний.

Практическая работа в группах.

Задание №1. Решение экологических ситуаций

1. В одном из канадских заповедников уничтожили всех волков, чтобы добиться увеличения стада оленей. Удалось ли таким образом достичь цели? Ответ объясните.

2. На определённой территории живут зайцы. Из них маленькие зайчата- 100 шт массой – 2 кг, и их родители 20 шт – массой 5 кг. Масса 1 лисы – 10 кг. Найдите количество лисиц в этом лесу. Сколько растений должно вырасти в лесу, чтобы зайцы выросли.

3. В водоеме с богатой растительностью обитает 2000 водяных крыс, каждая крыса потребляет в сутки 80г растений. Сколько бобров сможет прокормить этот водоем, если бобр в сутки потребляет в среднем 200 г растительного корма.

4. Приведенные в беспорядке факты изложите в логически правильной последовательности (в виде цифр).

1. Нильский окунь стал поедать много растительноядных рыб.

2. Сильно размножившись, растения стали загнивать, отравляя воду.

3. Для копчения нильского окуня требовалось много дров.

4. В 1960 г. британские колонисты запустили в воды озера Виктория нильского окуня, который быстро размножался и рос, достигая веса 40 кг и длины 1,5 м.

5. Леса на берегах озера интенсивно вырубались – поэтому началась водная эрозия почв.

6. В озере появились мертвые зоны с отравленной водой.

7. Численность растительноядных рыб сократилась, и озеро стало зарастать водными растениями.

8. Эрозия почв привела к снижению плодородия полей.

9. Скудные почвы не давали урожая, и крестьяне разорялись.

6. Самопроверка полученных знаний в виде теста.

1. Производители органических веществ в экосистеме

А) продуценты

Б) консументы

В) редуценты

Г) хищники

2. К какой группе относятся микроорганизмы, обитающие в почве

А) продуценты

Б) консументы I порядка

В) консументы II порядка

Г) редуценты

3. Назовите животное, которое следует включить в пищевую цепь: трава -> ... -> волк

Б) ястреб

4. Определите верно составленную пищевую цепь

А) еж -> растение -> кузнечик -> лягушка

Б) кузнечик -> растение -> еж -> лягушка

В) растение -> кузнечик -> лягушка -> еж

Г) еж -> лягушка -> кузнечик -> растение

5. В экосистеме хвойного леса к консументам 2-го порядка относят

А) ель обыкновенную

Б) лесных мышей

В) таежных клещей

Г) почвенных бактерий

6. Растения производят органические вещества из неорганических, поэтому играют в пищевых цепях роль

А) конечного звена

Б) начального звена

В) организмов-потребителей

Г) организмов-разрушителей

7. Бактерии и грибы в круговороте веществ выполняют роль:

А) производителей органических веществ

Б) потребителей органических веществ

В) разрушителей органических веществ

Г) разрушителей неорганических веществ

8. Определите правильно составленную пищевую цепь

А) ястреб -> синица -> личинки насекомых -> сосна

Б) сосна -> синица -> личинки насекомых -> ястреб

В) сосна -> личинки насекомых -> синица -> ястреб

Г) личинки насекомых -> сосна -> синица -> ястреб

9. Определите, какое животное надо включить в пищевую цепь: злаки -> ? -> уж -> коршун

А) лягушка

Г) жаворонок

10. Определите правильно составленную пищевую цепь

А) чайка -> окунь -> мальки рыб -> водоросли

Б) водоросли -> чайка -> окунь -> мальки рыб

В) мальки рыб -> водоросли -> окунь -> чайка

Г) водоросли -> мальки рыб -> окунь -> чайка

11. Продолжите цепь питания: пшеница -> мышь -> ...

Б) суслик

В) лисица

Г) тритон

7. Общие выводы урока.

Ответьте на вопросы:

  1. Как взаимосвязаны организмы в биогеоценозе (пищевыми связями)
  2. Что такое пищевая цепь (ряд последовательно питающихся друг другом организмов)
  3. Какие типы пищевых цепей выделяют (пастбищные и детритные цепи)
  4. Как называется звено в цепи питания (трофический уровень)
  5. Что такое пищевая сеть (переплетающиеся цепи питания)


© dagexpo.ru, 2024
Стоматологический сайт