Астероиды. Астероид – Журнал "Все о Космосе"

24.09.2019

Астероиды – сравнительно небольшие небесные тела, движущиеся по орбите вокруг Солнца. Они значительно уступают по размерам и массе планетам, имеют неправильную форму и не имеют атмосферы.

В этом разделе сайта сайт каждый сможет узнать много интересных фактов об астероидах. Возможно, с некоторыми Вы уже знакомы, другие будут для Вас новыми. Астероиды – интересный спектр Космоса, и мы предлагаем Вам ознакомиться с ними как можно подробнее.

Термин «астероид» впервые был придуман известным композитором Чарльзом Берни и использован Уильямом Гершелем на основе того, что данные объекты при просмотре в телескоп смотрятся как точки звезд, в то время как планеты выглядят дисками.

До сих пор нет точного определения термина «астероид». Астероиды до 2006 года было принято называть малыми планетами.

Основной параметр, по которому их классифицируют, – размер тела. К астероидам относят тела с диаметром больше 30 м, а тела, имеющие меньший размер, называют метеоритами.

Международный астрономический союз в 2006 году отнес большинство астероидов к малым телам нашей Солнечной системы.

На сегодняшний день в Солнечной системе выявлено сотни тысяч астероидов. На 11 января 2015 года в базе данных числится 670474 объекта, из числа которых у 422636 определены орбиты, они имеют официальный номер, более 19 тыс. из них имели официальные наименования. По мнению ученых, в Солнечной системе может быть от 1,1 до 1,9 млн объектов, размером больше 1 км. Большинство астероидов, известных на текущий момент, находится в пределах пояса астероидов, находящегося между орбитами Юпитера и Марса.

Самый большой астероид в Солнечной системе – Церера, имеющая размеры примерно 975х909 км, но с 24 августа 2006 г. ее отнесли в число карликовых планет. Остальные два крупных астероида (4) Веста и (2) Паллада имеют диаметр около 500 км. Причем (4) Веста – это единственный объект пояса астероидов, который видно невооруженным глазом. Все астероиды, которые двигаются по другим орбитам, могут прослеживаться в период прохождения вблизи нашей планеты.

Что касается общего веса всех астероидов главного пояса, то его оценивают в 3,0 – 3,6 1021 кг, что составляет примерно 4% от веса Луны. Однако на массу Цереры приходится около 32% от всей массы (9,5 1020 кг), а вместе с тремя другими крупными астероидами – (10) Гигея, (2) Паллада, (4) Веста – 51%, то есть большинство астероидов отличаются ничтожной массой по астрономическим меркам.

Изучение астероидов

После того как Уильям Гершель в 1781 году открыл планету Уран, начались первые открытия астероидов. Среднее гелиоцентрическое расстояние астероидов соответствует правилу Тициуса-Боде.

Франц Ксавер в конце 18 века создал группу из двадцати четырех астрономов. Начиная с 1789 года данная группа специализировалась на поисках планеты, которая согласно правилу Тициуса-Боде должна располагаться на расстоянии примерно 2,8 астрономических единиц (а.е.) от Солнца, а именно между орбитами Юпитера и Марса. Основная задача заключалась в описании координат звезд, находящихся в области зодиакальных созвездий на конкретный момент. Координаты проверялись в последующие ночи, выделялись объекты, смещающиеся на большие расстояния. По их предположению смещение искомой планеты должно составлять около тридцати угловых секунд в час, что было бы очень заметно.

Первый астероид, Церера, был выявлен итальянцем Пиации, который не участвовал в данном проекте, совершенно случайно, в первую же ночь столетия – 1801 год. Три остальных – (2) Паллада, (4) Веста и (3) Юнона – были обнаружены в следующие несколько лет. Самой последней (в 1807 году) была Веста. Еще через восемь лет бессмысленных поисков многие астрономы решили, что там больше нечего искать, и отказались от всяких попыток.

Но Карл Людвиг Хенке выявлял настойчивость и в 1830 г. опять приступил к поиску новых астероидов. Через 15 лет он обнаружил Астрею, которая была первым астероидом за 38 лет. И уже через 2 года обнаружил Гебу. После этого к работе подключились другие астрономы, и затем обнаруживалось не меньше одного нового астероида в год (кроме 1945 г.).

Метод астрофотографии для поиска астероидов впервые использовал Макс Вольф в 1891 году, согласно с которым на фото с длинным периодом экспонирования астероиды оставляли светлые короткие линии. Такой метод существенно ускорил выявление новых астероидов по сравнению с методами визуального наблюдения, использованными ранее. В одиночку Максу Вольфу удалось обнаружить 248 астероидов, тогда как до него немногим удалось найти больше 300. В наше время 385 000 астероидов имеют официальный номер, а 18 000 из них – еще и имя.

Пять лет назад две независимые группы астрономов из Бразилии, Испании и США заявили, что одновременно выявили водяной лед на поверхности Фемиды, одного из крупнейших астероидов. Их открытие позволило узнать происхождение воды на нашей планете. В начале своего существования она была слишком горячая, не в состоянии удержать большое количество воды. Данное вещество появилось позднее. Ученые предположили, что воду на Землю занесли кометы, но только изотопные составы воды в кометах и земной воды не совпадают. Поэтому можно предположить, что она попала на Землю при ее столкновении с астероидами. Вместе с тем ученые обнаружили на Фемиде сложные углеводороды, в т.ч. молекулы – предшественники жизни.

Название астероидов

Изначально астероидам давали имена героев греческой и римской мифологии, позже открыватели могли называть их, как им захочется, вплоть до своего имени. Сначала астероидам почти всегда давали женские имена, мужские же получали только те астероиды, которые имели необычные орбиты. С течением времени данное правило соблюдаться перестало.

Стоит отметить и то, что не любой астероид может получить имя, а только тот, орбита которого надежно вычислена. Нередко бывали случаи, когда астероид называли спустя много лет после открытия. Пока орбита не была вычислена, астероиду давалось только временное обозначение, отображающее дату его открытия, к примеру, 1950 DA. Первая буква означает номер полумесяца в году (в примере, как видите, это вторая половина февраля), соответственно, вторая обозначает его порядковый номер в указанном полумесяце (как видите, этот астероид был открыт первым). Цифры, как несложно догадаться, обозначают год. Поскольку английских букв 26, а полумесяцев 24, в обозначении никогда не применялись две буквы: Z и I. В том случае, если число астероидов, открытых в течение полумесяца, будет больше 24, ученые возвращались к началу алфавита, а именно прописывая второй букве – 2, соответственно, при следующем возвращении – 3 и т.д.

Наименование астероида после получения имени состоит из порядкового номера (числа) и названия – (8) Флора, (1) Церера и т.д.

Определение размеров и формы астероидов

Первые попытки измерить диаметры астероидов, применяя метод прямого измерения видимых дисков посредством нитяного микрометра, предприняли Йоганн Шретер и Уильям Гершель в 1805 году. Затем в 19 веке другими астрономами точно таким же методом проводились измерения самых ярких астероидов. Основной недостаток такого способа – значительные расхождения результатов (к примеру, максимальные и минимальные размеры Цереры, которые были получены астрономами, отличались в 10 раз).

Современные методы определения размеров астероидов состоят из методов поляриметрии, тепловой и транзитной радиометрии, спекл-интерферометрии, радиолокационного метода.

Один из самых качественных и простых – транзитный метод. При движении астероида относительно Земли он может проходить на фоне отделенной звезды. Такое явление получило название «покрытие звезд астероидами». Измерив длительность снижения яркости звезды и имея данные о расстоянии до астероида, можно точно определить его размер. Благодаря такому методу можно точно вычислить размеры крупных астероидов, по типу Паллады.

Сам метод поляриметрии состоит в определении размера на основе яркости астероида. От величины астероида зависит количество солнечного света, который он отражает. Но во многом яркость астероида зависит от альбедо астероида, что определяется составом, из которого состоит поверхность астероида. К примеру, из-за высокого альбедо астероид Веста отражает в четыре раза больше света по сравнению с Церерой и считается самым заметным астероидом, который нередко можно заметить даже невооруженным глазом.

Однако само альбедо тоже очень легко определяется. Чем меньше яркость астероида, то есть чем он меньше отражает в видимом диапазоне солнечной радиации, тем, соответственно, больше он ее поглощает, после того как он нагревается, излучает ее в виде тепла в инфракрасном диапазоне.

Также он может быть использован для вычисления формы астероида посредством регистрации изменения его блеска во время вращения, так и для определения периода данного вращения, а также для выявления наиболее крупных структур на поверхности. К тому же результаты, полученные посредством инфракрасных телескопов, используются для определения размеров посредством тепловой радиометрии.

Астероиды и их классификация

В основе общей классификации астероидов лежат характеристики их орбит, а также описание видимого спектра солнечного света, который отражается их поверхностью.

Астероиды принято объединять в группы и семейства, опираясь на характеристики их орбит. Чаще всего группа астероидов получает название по имени самого первого обнаруженного на данной орбите астероида. Группы – сравнительно свободное образование, в то время как семейства – более плотные, сформировавшиеся в прошлом при разрушении больших астероидов в результате столкновения с прочими объектами.

Спектральные классы

Бен Целлнер, Дэвид Моррисон, Кларк Р. Чампен в 1975 году разработали общую систему классификации астероидов, которая опиралась на показатели альбедо, цвета и характеристики спектра отраженного солнечного света. В самом начале данная классификация определяла исключительно 3 типа астероидов, а именно:

Класс С – углеродные (большинство известных астероидов).

Класс S – силикатные (около 17% известных астероидов).

Класс М – металлические.

Данный список по мере изучения все большего числа астероидов был расширен. Появились следующие классы:

Класс А – отличаются высоким альбедо и красноватым цветом в видимой части спектра.

Класс B – относятся к астероидам класса C, вот только они не поглощают волны ниже 0,5 микрон, а их спектр немного голубоватый. В целом альбедо выше по сравнению с другими углеродными астероидами.

Класс D – имеют низкое альбедо и ровный красноватый спектр.

Класс E – поверхность данных астероидов содержит в своем составе энстатит и имеет сходство с ахондритами.

Класс F – схожи с астероидами B класса, но не имеют следов «воды».

Класс G – имеют низкое альбедо и практически плоский спектр отражения в видимом диапазоне, что говорит о сильном УФ-поглощении.

Класс P – точно так же, как и астероиды D-класса, отличаются низким альбедо и ровным красноватым спектром, не имеющим четких линий поглощения.

Класс Q – имеют широкие и яркие линии пироксена и оливина на длине волны в 1 микрон и особенности, говорящие о наличии металла.

Класс R – отличаются сравнительно высоким альбедо и на длине 0,7 мкм имеют красноватый спектр отражения.

Класс Т – отличаются красноватым спектром и низким альбедо. Спектр похож на астероиды D и P классов, но занимает промежуточное положение по наклону.

Класс V – характеризуются умеренными яркими и схожими к более общему S-классу, которые тоже в большей степени состоят из силикатов, камня и железа, но отличаются высоким содержанием пироксена.

Класс J – класс астероидов, которые образовались предположительно из внутренних частей Весты. Несмотря на то что их спектры приближены к спектрам астероидов класса V, на длине волн 1 микрон их отличают сильные линии поглощения.

Стоит учитывать, что число известных астероидов, которые относятся к определенному типу, необязательно отвечает действительности. Многие типы сложны для определения, тип какого-то астероида может изменяться при более подробных исследованиях.

Распределение астероидов по размерам

С ростом размеров астероидов их количество заметно уменьшалось. Несмотря на то что в целом это отвечает степенному закону, существуют пики при 5 и 100 километрах, где больше астероидов, чем это прогнозировалось в соответствии с логарифмическим распределением.

Как образовывались астероиды

Ученые полагают, что в поясе астероидов планетезимали эволюционировали точно так же, как и в прочих областях солнечной туманности до того, пока планета Юпитер не достигла своей нынешней массы, после чего в результате орбитальных резонансов с Юпитером из пояса 99% планетезималей было выброшено. Моделирование и скачки спектральных свойств и распределений скоростей вращений показывают, что астероиды, имеющие диаметр больше 120 километров, сформировались в результате аккреции в эту раннюю эпоху, тогда как меньшие тела представляют собой осколки от столкновений между разными астероидами после или во время рассеивания гравитацией Юпитера изначального пояса. Вести и Церера приобрели габаритный размер для гравитационной дифференциации, во время которой тяжелые металлы погрузились к ядру, а из относительно скальных пород сформировалась кора. Что касается модели Ниццы, множество объектов пояса Койпера сформировались во внешнем поясе астероидов, на расстоянии больше чем 2,6 астрономических единиц. Причем позже большинство из них были выброшены гравитацией Юпитера, но те, что сохранились, могут относиться к астероидам класса D, в том числе и Церера.

Угроза и опасность от астероидов

Несмотря на то что наша планета существенно больше всех астероидов, столкновение с телом, имеющим размер больше 3 километров, может стать причиной уничтожения цивилизации. Если размер меньший, но более 50 м в диаметре, то он может привести к гигантскому экономическому ущербу, включая многочисленные жертвы.

Чем тяжелее и больше астероид, тем, соответственно, он представляет большую опасность, но и выявить его в данном случае куда проще. На данный момент самым опасным является астероид Апофис, диаметр которого составляет около 300 метров, при столкновении с ним может быть уничтожен целый город. Но, по мнению ученых, в целом никакой угрозы человечеству при столкновении с Землей он не несет.

Астероид 1998 QE2 приблизился к планете 1 июня 2013 года на самое близкое расстояние (5,8 млн км) за последние двести лет.

1 сентября 2017 года в опасной близости от Земли пролетел астероид Флоренс. Это взбудоражившее общественность событие привлекло интерес обычных людей к астероидам. Далекие от астрономии люди стали интересоваться самыми значимыми большими астероидами которые вскоре могут приблизится к земле. Астрономы значимость астероидов связывают с их величиной. В результате наибольший интерес в непрофессиональной среде вызывают 10 самых больщих и опасных астероидов во вселенной . Классифицируется величина согласно их диаметров. Хотя в некоторых случаях из-за сложности формы определить его диаметр не удается столетиями.

10. Евфросина

Открыта в сентябре 1854 года. Это быстрого вращения астероид, диаметр которого 250 км. Астероид представляет собой темное образование, богатое углеродными соединениями с необычной орбитой. Ефросину видно только в северном полушарии. Плотность астероида Евфросина весьма велика и своим влиянием она изгоняет мелкие небесные тела с их орбит. Свое название астероид получил от древнеримской богини веселья.

9. Гектор

Астрономы открыли его в феврале 1907 года. Диаметр 205 км. Это странная удлиненная фигура. Есть мнение, что это соединение двух астероидов, которых держит гравитация. Некоторые ученые предполагали искусственное происхождение астероида, которое могло объяснить необычность орбиты Гектора, ее отличие от всех других орбит астероидов. Многие астрономы считают, что Гектор перекочевал из дальнего пояса астероидов Койпера. Его состав аналогичен составу астероидов этого пояса. Назвали по имени мифического греческого героя Трои.

8. Сильвия

Открыт в мае 1866 года. Диаметр его равен 232 км. Имеет пару спутников, которых назвали Ромул и Рем. Астероид невероятно порист, пустота составляет 60% его величины. Это заставляет некоторых астрономов считать его не монолитом, а скоплением обломков. Спутники Сильвии также представляют собой скрепленное гравитацией собрание обломков. Астероид имеет вытянутую форму. Название астероид получил от мифического персонажа – матери братьев основателей Рима.

7. Давида

Открыт астероид в марте 1903 года, но до сих пор его диаметр точно определить не удалось. Астрономы расходятся в оценках величины диаметра на 60 километров. Ориентировочно он равен 270 км. Очень массивный астероид. На его поверхности обнаружили гигантский кратер. Форма астероида неизвестна, так как он все время смотрит в сторону северного полюса. Назван астероид по имени профессора астрономии его открывшего.

6. Европа

Это темный астероид диаметром 302 км. Его открыли в 1858 году. Отличается астероид от других аналогичных космических образований малой массой и большой пористостью. В своем составе содержит много углерода. В целом о строении этого астероида известно немного. Назвали во имя мифического греческого персонажа – дочери финикийского царя.

5. Интерамния

Этот малоизвестный для широкой публики большой астероид открыли в 1910 году. Он настолько темный, что астрономы смогли его обнаружить спустя 100 лет после открытия первых астероидов. До сих пор Интерамния малоизученна. Астрономам понятно только, что ее поверхность состоит из реголита и покрыта большим слоем пыли. Следов воды на этом астероиде не обнаружили. Название необычное, означает «между реками».

4. Гигея

Этот астероид открыт в апреле 1849 года. Диаметр имеет около 400 км, точнее определить пока не удалось. Когда Гигея находится на самом близком расстоянии от Земли, ее можно рассмотреть в бинокль. Но большую часть времени она движется на большом расстоянии от Солнца. Это очень темный астероид. С определением его состава имеются проблемы. Название получил от греческой богини, помощницы бога врачевания.

3. Паллада

Была вторым по величине астероидом, но после уточнения размера Весты стала третьим. Диаметр Паллады в 2 раза меньше чем у Цереры – 512 километров. Открыт данный астероид в марте 1802 года. Паллада имеет форму эллипса. В ее составе много углеродистых хондридов. Название получил от греческой богини.

2. Веста

После перевода Цереры в планеты стала первым по величине астероидом. Его диаметр 525 км. Открыли астероид в марте 1807 года. Это самый яркий астероид, который можно видеть в бинокль. Весту астрономы отказались причислить к карликовым планетам из-за ее несимметричной формы. Веста имеет ядро из железа и никеля и каменную оболочку. Назвали астероид в честь римской богини.

1. Церера

Самый большой астероид , диаметром 950 километров. Был открыт в январе 1801 года. Он такой крупный, что с 2006 года астрономы стали считать Цереру маленькой планетой. Это самый большой объект пояса астероидов, правильной сферической формы, что астрономы считают удивительным. Церера состоит из каменного ядра и ледяной оболочки. На ее поверхности обнаружен водяной пар. Назван астероид в честь римской богини.

Форма и поверхность астероида Ида.
Север находится сверху.
Анимацию выполнил Тайфун Онер.
(Copyrighted © 1997 by A. Tayfun Oner).

1. Общие представления

Астероиды - это твердые каменистые тела, которые подобно планетам движутся по околосолнечным эллиптическим орбитам. Но размеры этих тел намного меньше, чем у обычных планет, поэтому их еще называют малыми планетами. Диаметры астероидов находятся в пределах от нескольких десятков метров (условно) до 1000 км (размер наибольшего астероида Цереры). Термин "астероид" (или "звездоподобный") был введен известным астрономом XVIII века Уильямом Гершелем для характеристики вида этих объектов при наблюдениях в телескоп. Даже с помощью самых крупных наземных телескопов невозможно различить видимые диски у наибольших астероидов. Они наблюдаются как точечные источники света, хотя, как и другие планеты, в видимом диапазоне сами ничего не излучают, а лишь отражают падающий солнечный свет. Диаметры некоторых астероидов были измерены с помощью метода "покрытия звезд", в те удачные моменты, когда они оказывались на одном луче зрения с достаточно яркими звездами. В большинстве же случаев их размеры оцениваются с помощью специальных астрофизических измерений и расчетов. Основная масса известных на сегодняшний день астероидов движется между орбитами Марса и Юпитера на расстояниях от Солнца 2,2-3,2 астрономических единиц (далее - а. е.). Всего на сегодняшний день открыто примерно 20000 астероидов, из которых около 10000 зарегистрированы, то есть им присвоены номера или даже имена собственные, а орбиты рассчитаны с большой точностью. Имена собственные астероидам, обычно присваивают их первооткрыватели, но в соответствии с установленными международными правилами. Вначале, когда малых планет было известно еще немного, их имена брали, как и для других планет, из древнегреческой мифологии. Кольцевая область пространства, которую занимают эти тела, называется главным поясом астероидов. При средней линейной орбитальной скорости около 20 км/с астероиды главного пояса затрачивают на один оборот вокруг Солнца от 3 до 9 земных лет в зависимости от удаленности от него. Наклоны плоскостей их орбит по отношению к плоскости эклиптики иногда достигают 70° , но в основном находятся в диапазоне 5-10° . На этом основании все известные астероиды главного пояса делят примерно поровну на плоскую (с наклонами орбит до 8°) и сферическую подсистемы.

При телескопических наблюдениях астероидов было обнаружено, что яркость абсолютного большинства их меняется за короткое время (от нескольких часов до нескольких дней). Астрономы уже давно предполагали, что эти изменения блеска астероидов связаны с их вращением и определяются, в первую очередь, их неправильной формой. Первые же снимки астероидов, полученные с помощью космических аппаратов, это подтвердили и еще показали, что поверхности этих тел изрыты кратерами или воронками разных размеров. На рисунках 1-3 показаны первые космические изображения астероидов, полученные с помощью разных космических аппаратов. Очевидно, что такие формы и поверхности малых планет образовались при их многочисленных столкновениях с другими твердыми небесными телами. В общем случае, когда форма наблюдаемого с Земли астероида неизвестна (поскольку он виден как точечный объект), то ее стараются аппроксимировать с помощью трехосного эллипсоида.

В таблице 1 приведена основная информация о самых крупных или просто интересных астероидах.

Таблица 1. Информация о некоторых астероидах.
N Астероид
Название
Рус./Лат.
Диаметр
(км)
Масса
(10 15 кг)
Период
вращения
(час)
Орбиталь.
период
(лет)
Спектр.
класс
Большая
п/ось орб.
(а.е.)
Эксцентриситет
орбиты
1 Церера/
Ceres
960 х 932 87000 9,1 4,6 С 2,766 0,078
2 Паллада/
Pallas
570 х 525х 482 318000 7,8 4,6 U 2,776 0,231
3 Юнона/
Juno
240 20000 7,2 4,4 S 2,669 0,258
4 Веста/
Vesta
530 300000 5,3 3,6 U 2,361 0,090
8 Флора/
Flora
141 13,6 3,3 S 0,141
243 Ида/ Ida 58 х 23 100 4,6 4,8 S 2,861 0,045
253 Матильда/
Mathilde
66 х 48 х 46 103 417,7 4,3 C 2,646 0,266
433 Эрос/Eros 33 х 13 х 13 7 5,3 1,7 S 1,458 0,223
951 Гаспра/
Gaspra
19 х 12 х 11 10 7,0 3,3 S 2,209 0,174
1566 Икарус/
Icarus
1,4 0,001 2,3 1,1 U 1,078 0,827
1620 Географ/
Geographos
2,0 0,004 5,2 1,4 S 1,246 0,335
1862 Аполлон/
Apollo
1,6 0,002 3,1 1,8 S 1,471 0,560
2060 Хирон/
Chiron
180 4000 5,9 50,7 B 13,633 0,380
4179 Тоутатис/
Toutatis
4,6 х 2,4х 1,9 0,05 130 1,1 S 2,512 0,634
4769 Касталия/
Castalia
1,8 х 0,8 0,0005 0,4 1,063 0,483

Пояснения к таблице.

1 Церера - самый большой астероид, который был обнаружен первым. Он был открыт итальянским астрономом Джузеппе Пиацци 1 января 1801 г. и назван в честь римской богини плодородия.

2 Паллада - второй по величине астероид, обнаруженный также вторым. Это было сделано немецким астрономом Генрихом Ольберсом 28 марта 1802 г.

3 Юнона - открыт К. Гардингом в 1804 г.

4 Веста - третий по величине астероид, открытый также Г. Ольберсом в 1807 г. У этого тела имеются наблюдательные признаки наличия базальтовой коры, покрывающей оливиновую мантию, что может быть следствием плавления и дифференциации его вещества. Изображение видимого диска этого астероида было впервые получено в 1995 г. с помощью американского Космического телескопа им. Хаббла, работающего на околоземной орбите.

8 Флора - самый крупный астероид большого семейства астероидов, названного тем же именем, насчитывающего несколько сотен членов, которое впервые было охарактеризовано японским астрономом К. Хираямой. Астероиды этого семейства имеют очень близкие орбиты, что, вероятно, подтверждает их совместное происхождение от общего родительского тела, разрушенного при столкновении с каким-то другим телом.

243 Ида - астероид главного пояса, изображения которого получены с помощью космического аппарата "Галилео" 28 августа 1993 г. Эти изображения позволили обнаружить маленький спутник Иды, названный впоследствии Дактилем. (См. рисунки 2 и 3).

253 Матильда - астероид, изображения которого получены с помощью космического аппарата "НИАР" в июне 1997 г. (См. рис. 4).

433 Эрос - сближающийся с Землей астероид, изображения которого были получены с помощью космического аппарата "НИАР" в феврале 1999 г.

951 Гаспра - астероид главного пояса, изображения которого впервые были получены с помощью межпланетного аппарата "Галилео" 29 октября 1991 г. (См. рис. 1).

1566 Икарус - сближающийся с Землей и пересекающий ее орбиту астероид, имеющий очень большой эксцентриситет орбиты (0,8268).

1620 Географ - сближающийся с Землей астероид, являющийся либо двойным объектом, либо имеющий очень нерегулярную форму. Это следует из зависимости его блеска от фазы вращения вокруг собственной оси, а также из его радиолокационных изображений.

1862 Аполлон - самый большой астероид одноименного семейства тел, сближающихся с Землей и пересекающих ее орбиту. Эксцентриситет орбиты Аполлона достаточно велик - 0,56.

2060 Хирон - астероид-комета, проявляющий периодически кометную активность (регулярные увеличения яркости вблизи перигелия орбиты, то есть на минимальном расстоянии от Солнца, что можно объяснить испарением входящих в состав астероида летучих соединений), движущийся по эксцентричной траектории (эксцентриситет 0,3801) между орбитами Сатурна и Урана.

4179 Тоутатис - двойной астероид, компоненты которого, находятся, вероятно, в контакте и имеют размеры примерно 2,5 км и 1,5 км. Изображения этого астероида были получены с помощью радиолокаторов, расположенных в Аресибо и Голдстоуне. Из всех известных на сегодняшний день астероидов, сближающихся с Землей в XXI столетии, Тоутатис должен быть на ближайшем расстоянии (около 1,5 млн. км, 29 сентября 2004 г.).

4769 Касталия - двойной астероид с примерно одинаковыми (по 0,75 км в диаметре) компонентами, находящимися в контакте. Его радио-изображение было получено с помощью радиолокатора в Аресибо.

Изображение астероида 951 Гаспра

Рис. 1. Изображение астероида 951 Гаспра, полученное с помощью космического аппарата "Галилео", в псевдоцветах, то есть как комбинация изображений через фиолетовый, зеленый и красный светофильтры. Результирующие цвета специально усилены для того, чтобы подчеркнуть слабые различия в поверхностных деталях. Голубоватый оттенок имеют области обнажения горных пород, в то время как красноватый цвет имеют области, покрытые реголитом (раздробленным материалом). Пространственное разрешение в каждой точке снимка составляет 163 м. Гаспра имеет неправильную форму и примерные размеры вдоль 3-х осей 19 х 12 х 11 км. Солнце освещает астероид справа.
Снимок NASA GAL-09.


Изображение астероида 243 Иды

Рис. 2 Изображение астероида 243 Иды и ее маленького спутника Дактиля в псевдоцветах, полученное с помощью космического аппарата "Галилео". Исходные изображения, использованные для получения представленного на рисунке снимка, были получены примерно с расстояния 10500 км. Цветовые различия могут указывать на вариации в составе поверхностного вещества. Ярко-голубые участки, возможно, покрыты веществом, состоящим из железосодержащих минералов. Размер Иды вдлину составляет 58 км, а ее ось вращения ориентирована вертикально с небольшим наклоном вправо.
Снимок NASA GAL-11.

Рис. 3. Изображение Дактиля, маленького спутника 243 Иды. Пока неизвестно, является ли он куском Иды, отколотым от нее при каком-то столкновении, или посторонним объектом, захваченным ее гравитационным полем и движущимся по круговой орбите. Это снимок был получен 28 августа 1993 г. через нейтральный светофильтр с расстояния примерно 4000 км, за 4 минуты до наиболее тесного сближения с астероидом. Размеры Дактиля составляют примерно 1,2 х 1,4 х 1,6 км. Снимок NASA GAL-04


Астероид 253 Матильда

Рис. 4. Астероид 253 Матильда. Снимок NASA, космический аппарат NEAR

2. Как мог возникнуть главный пояс астероидов?

Орбиты тел, сосредоточенных в главном поясе, являются устойчивыми и имеют близкую к круговой или слабо эксцентричную форму. Здесь они движутся в "безопасной" зоне, где минимально гравитационное влияние на них больших планет, и в первую очередь, Юпитера. Имеющиеся на сегодняшний день научные факты показывают, что именно Юпитер сыграл главную роль в том, что на месте главного пояса астероидов в период зарождения Солнечной системы не смогла возникнуть еще одна планета. Но даже в начале нашего века многие ученые еще были уверены в том, что между Юпитером и Марсом раньше существовала еще одна большая планета, которая по каким-то причинам разрушилась. Первым высказал такую гипотезу еще Ольберс, сразу после своего открытия Паллады. Он же придумал и название этой гипотетической планете - Фаэтон. Сделаем небольшое отступление и опишем один эпизод из истории Солнечной системы - той истории, которая основывается на современных научных фактах. Это необходимо, в частности, для понимания происхождения астероидов главного пояса. Большой вклад в формирование современной теории происхождения Солнечной системы сделали советские ученые О.Ю. Шмидт и В.С. Сафронов.

Одно из самых крупных тел, образовавшееся на орбите Юпитера (на расстоянии 5 а.е. от Солнца) около 4,5 млрд. лет назад, стало увеличиваться в размерах быстрее других. Находясь на границе конденсации летучих соединений (Н 2 , Н 2 О, NH 3 , CO 2 , СН 4 и др.), которые вытекали из более близкой к Солнцу и более разогретой зоны протопланетного диска, это тело стало центром аккумуляции вещества, состоящего в основном из замерзших газовых конденсатов. При достижении достаточно большой массы, оно стало захватывать своим гравитационным полем ранее сконденсированное вещество, находящееся ближе к Солнцу, в зоне родительских тел астероидов, и таким образом тормозить рост последних. С другой стороны, более мелкие тела, не захваченные прото-Юпитером по каким-либо причинам, но находящиеся в сфере его гравитационного влияния, эффективно разбрасывались в разные стороны. Аналогичным образом, вероятно, происходил выброс тел из зоны формирования Сатурна, хотя и не так интенсивно. Эти тела пронизывали и пояс родительских тел астероидов или планетезималей, возникших ранее между орбитами Марса и Юпитера, "выметая" их из этой зоны или подвергая дроблению. Причем до этого постепенный рост родительских тел астероидов был возможен благодаря их небольшим относительным скоростям (примерно до 0,5 км/с), когда столкновения каких-либо объектов заканчивались их объединением, а не дроблением. Увеличение же потока тел, вбрасываемых в пояс астероидов Юпитером (и Сатурном) в ходе его роста, привело к тому, что относительные скорости родительских тел астероидов значительно возросли (до 3-5 км/с) и стали более хаотическими. В конечном итоге процесс аккумуляции родительских тел астероидов сменился процессом их фрагментации при взаимных столкновениях, а потенциальная возможность формирования достаточно большой планеты на данном расстоянии от Солнца исчезла навсегда.

3. Орбиты астероидов

Возвращаясь к современному состоянию пояса астероидов, следует подчеркнуть, что Юпитер по-прежнему продолжает играть первостепенную роль в эволюции орбит астероидов. Длительное гравитационное влияние (более 4 млрд. лет) этой планеты-гиганта на астероиды главного пояса привело к тому, что имеется целый ряд "запретных" орбит или даже зон на которых малых планет практически нет, а если они туда и попадают, то не могут находиться там продолжительное время. Их называют пробелами или люками Кирквуда - по имени Дэниэла Кирквуда, ученого, впервые их обнаружившего. Такие орбиты являются резонансными, поскольку движущиеся по ним астероиды испытывают сильное гравитационное воздействие со стороны Юпитера. Периоды обращения, соответствующие этим орбитам, находятся в простых отношениях с периодом обращения Юпитера (например, 1:2; 3:7; 2:5; 1:3 и др.). Если какой-либо астероид или его фрагмент в результате столкновения с другим телом попадает на резонансную или близкую к ней орбиту, то большая полуось и эксцентриситет его орбиты достаточно быстро меняются под влиянием юпитерианского гравитационного поля. Все кончается тем, что астероид либо уходит с резонансной орбиты и может даже покинуть главный пояс астероидов, либо оказывается обреченным на новые столкновения с соседними телами. Таким образом соответствующий пробел Кирквуда "очищается" от любых объектов. Однако следует подчеркнуть, что в главном поясе астероидов нет никаких щелей или пустых промежутков, если представить себе мгновенное распределение всех входящих в него тел. Все астероиды, в любой момент времени достаточно равномерно заполняют пояс астероидов, так как, двигаясь по эллиптическим орбитам, большую часть времени проводят в "чужой" зоне. Еще один, "противоположный" пример гравитационного влияния Юпитера: у внешней границы главного пояса астероидов есть два узких дополнительных "колечка", наоборот, составленные из орбит астероидов, периоды обращения которых находятся в пропорциях 2:3 и 1:1 по отношению к периоду обращения Юпитера. Очевидно, что астероиды с периодом обращения, соответствующим отношению 1:1, находятся прямо на орбите Юпитера. Но они движутся на удалении от него, равном радиусу юпитерианской орбиты, с опережением или отставанием. Те астероиды, которые в своем движении опережают Юпитер, называют "греками", а те, что следуют за ним - "троянцами" (так они названы в честь героев Троянской войны). Движение этих малых планет является достаточно устойчивым, так как они находятся в так называемых "точках Лагранжа", где уравниваются действующие на них гравитационные силы. Общее же название этой группы астероидов - "троянцы". В отличие от троянцев, которые могли постепенно накопиться в окрестностях точек Лагранжа в течение длительной столкновительной эволюции разных астероидов, есть семейства астероидов с очень близкими орбитами входящих в них тел, которые образовались, скорее всего, в результате относительно недавних распадов соответствующих им родительских тел. Это, например, семейство астероида Флора, насчитывающее уже около 60 членов, и ряд других. В последнее время ученые пытаются определить общее число таких семейств астероидов для того, чтобы таким образом оценить первоначальное количество их родительских тел.

4. Астероиды, сближающиеся с Землей

Вблизи внутреннего края главного пояса астероидов существуют и другие группы тел, орбиты которых далеко выходят за пределы главного пояса и могут даже пересекаться с орбитами Марса, Земли, Венеры и даже Меркурия. В первую очередь, это группы астероидов Амура, Аполлона и Атона (по названиям крупнейших представителей, входящих в эти группы). Орбиты таких астероидов уже не являются такими стабильными, как у тел главного пояса, а относительно быстро эволюционируют под действием гравитационных полей не только Юпитера, но и планет земной группы. По этой причине такие астероиды могут переходить из одной группы в другую, а само деление астероидов на вышеназванные группы является условным, основанным на данных о современных орбитах астероидов. В частности амурцы движутся по эллиптическим орбитам, перигелийное расстояние (минимальное расстояние до Солнца) которых не превышает 1,3 а.е. Аполлонцы движутся по орбитам с перигелийным расстоянием меньшим 1 а.е. (напомним, что это среднее удаление Земли от Солнца) и проникают внутрь земной орбиты. Если у амурцев и аполлонцев большая полуось орбиты превосходит 1 а.е., то у атонцев она менее или порядка этой величины и эти астероиды, следовательно, движутся в основном внутри земной орбиты. Очевидно, что аполлонцы и атонцы, пересекая орбиту Земли могут создавать угрозу столкновения с ней. Существует даже общее определение этой группы малых планет как "астероиды, сближающиеся с Землей" - это тела, размеры орбит которых не превосходят 1,3 а.е. На сегодняшний день таких объектов обнаружено около 800. Но их общее количество может быть значительно большим - до 1500-2000 с размерами более 1 км и до 135000 с размерами более 100 м. Существующая угроза Земле со стороны астероидов и других космических тел, которые находятся или могут оказаться в земных окрестностях, широко обсуждается в научных и общественных кругах. Более подробно об этом, а также о мерах, предлагаемых для защиты нашей планеты, можно узнать в недавно опубликованной книге под редакцией А.А. Боярчука .

5. О других астероидных поясах

За орбитой Юпитера также существуют астероидоподобные тела. Более того, по последним данным оказалось, что таких тел очень много на периферии Солнечной системы. Впервые предположение об этом было высказано американским астрономом Джерардом Койпером еще в 1951 г. Он сформулировал гипотезу о том, что за орбитой Нептуна, на расстояниях около 30-50 а.е. может быть целый пояс тел, который служит источником короткопериодических комет. И действительно, с начала 90-х годов (с введением в действие самых крупных телескопов с диаметром до 10 м на Гавайских островах) за орбитой Нептуна было обнаружено более сотни астероидоподобных объектов с диаметрами примерно от 100 до 800 км. Совокупность этих тел была названа "поясом Койпера", хотя их пока и недостаточно для "полноценного" пояса. Тем не менее, по некоторым оценкам количество тел в нем может быть не меньше (если не больше), чем в главном поясе астероидов. По параметрам орбит вновь открытые тела разделили на два класса. К первому, так называемому "классу Плутино" отнесли примерно треть всех транснептуновых объектов. Они движутся в резонансе 3:2 с Нептуном по достаточно эллиптичным орбитам (большие полуоси около 39 а.е.; эксцетриситеты 0,11-0,35; наклоны орбит к эклиптике 0-20гр.), похожим на орбиту Плутона, откуда и возникло название этого класса. В настоящее время между учеными даже идут дискуссии о том, считать ли Плутон полноправной планетой или только одним из объектов вышеназванного класса. Однако, скорее всего, статус Плутона не изменится, поскольку его средний диаметр (2390 км) значительно больше, чем диаметры известных транснептуновых объектов, и кроме того, как и у большинства других планет Солнечной системы, у него есть большой спутник (Харон) и атмосфера. Во второй класс вошли так называемые "типичные объекты пояса Койпера", поскольку их большинство (оставшиеся 2/3) из числа известных и движутся они по орбитам, близким к круговым с большими полуосями в диапазоне 40-48 а.е. и различными наклонами (0-40°). Пока что большая удаленность и относительно малые размеры препятствуют обнаружению новых подобных тел с более высокими темпами, хотя для этого используются самые крупные телескопы и самая современная техника. На основе сравнения этих тел с известными астероидами по оптическим характеристикам сейчас полагают, что первые являются самыми примитивными в нашей планетной системе. Имеется ввиду, что их вещество с момента своей конденсации из протопланетной туманности испытало совсем небольшие изменения по сравнению, например, с веществом планет земной группы. Фактически, абсолютное большинство этих тел по своему составу могут быть ядрами комет, о чем речь будет также идти и в разделе "Кометы".

Обнаружен ряд астероидных тел (со временем это число, вероятно, будет увеличиваться) между поясом Койпера и главным поясом астероидов - это "класс Кентавров" - по аналогии с древнегреческими мифологическими кентаврами (получеловеками-полулошадями). Один из их представителей - это астероид Хирон, который было бы более правильным назвать астероидом-кометой, поскольку он периодически проявляет кометную активность в виде возникающей газовой атмосферы (комы) и хвоста. Они образуются из летучих соединений, входящих в состав вещества этого тела, при прохождении им перигелийных участков орбиты. Хирон является одним из наглядных примеров отсутствия резкой границы между астероидами и кометами по составу вещества а, возможно, и по происхождению. Он имеет размер около 200 км, а его орбита перекрывается с орбитами Сатурна и Урана. Другое название объектов этого класса - "пояс Казимирчак-Полонской" - по имени Е.И. Полонской, доказавшей существование астероидных тел между планетами-гигантами.

6. Немного о методах исследований астероидов

Наше понимание природы астероидов сейчас основывается на трех основных источниках информации: наземных телескопических наблюдениях (оптических и радиолокационных), изображениях, полученных со сближающихся с астероидами космических аппаратов, и лабораторного анализа известных земных горных пород и минералов, а также упавших на Землю метеоритов, которые (о чем будет идти речь в разделе "Метеориты") в основном считаются осколками астероидов, ядер комет и поверхностей планет земной группы. Но наибольший объем информации о малых планетах все же мы получаем с помощью наземных телескопических измерений. Поэтому астероиды делятся на так называемые "спектральные типы" или классы в соответствии, в первую очередь, с их наблюдаемыми оптическими характеристиками. В первую очередь это альбедо (доля отражаемого телом света от количества падающего на него солнечного света в единицу времени, если считать направления падающих и отраженных лучей совпадающими) и общая форма спектра отражения тела в видимом и ближнем инфракрасном диапазонах (который получается путем простого деления на каждой длине световой волны спектральной яркости поверхности наблюдаемого тела на спектральную яркость на той же длине волны самого Солнца). Эти оптические характеристики используются для оценки химико-минералогического состава вещества, слагающего астероиды. Иногда принимаются во внимание и дополнительные данные (если они есть), например, о радиолокационной отражательной способности астероида, о скорости его вращения вокруг собственной оси и т. д.

Стремление поделить астероиды на классы объясняется желанием ученых упростить или схематизировать описание огромного количества малых планет, хотя, как показывают более тщательные исследования, это не всегда удается. В последнее время уже возникает необходимость введения подклассов и более мелких делений спектральных типов астероидов для характеристики каких-то общих особенностей их отдельных групп. Прежде чем дать общую характеристику астероидов разных спектральных типов, поясним как можно оценить состав астероидного вещества с помощью дистанционных измерений. Как уже отмечалось, считается, что астероиды какого-то одного типа имеют примерно одинаковые значения альбедо и близкие по форме спектры отражения, которые можно заменить на средние (для данного типа) величины или характеристики. Эти средние величины для определенного типа астероидов сравниваются с аналогичными величинами для земных горных пород и минералов, а также тех метеоритов, образцы которых имеются в земных коллекциях. Химический и минеральный составы образцов, которые называются "образцами-аналогами", вместе с их спектральными и другими физическими свойствами, как правило, уже хорошо изучены в земных лабораториях. На основе такого сравнения и подбора образцов-аналогов и определяется в первом приближении некоторый средний химический и минеральный состав вещества для астероидов данного типа. Оказалось, что в отличие от земных горных пород вещество астероидов в целом является значительно более простым или даже примитивным. Это говорит о том, что физические и химические процессы, в которые было вовлечено астероидное вещество в течение всей истории существования Солнечной системы, были не такими разнообразными и сложными, как на планетах земной группы. Если на Земле сейчас надежно установленными считаются около 4000 минеральных видов , то на астероидах их может быть всего лишь несколько сотен. Об этом можно судить по количеству минеральных видов (около 300), обнаруженному в упавших на земную поверхность метеоритах, которые могут быть обломками астероидов. Большое разнообразие минералов на Земле возникло не только потому, что образование нашей планеты (как и других планет земной группы) проходило в протопланетном облаке значительно ближе к Солнцу, а значит, и при более высоких температурах. Кроме того, что силикатное вещество, металлы и их соединения, находясь в жидком или пластичном состоянии при таких температурах, разделились или дифференцировали по удельному весу в гравитационном поле Земли, сложившиеся температурные условия оказались благоприятными для возникновения постоянной газовой или жидкой окислительной среды, основными компонентами которой были кислород и вода. Их длительное и постоянное взаимодействие с первичными минералами и породами земной коры и привело к тому богатству минералов, которое мы наблюдаем. Возвращаясь к астероидам, следует отметить, что по дистанционным данным они в основном состоят из более простых силикатных соединений. В первую очередь - это безводные силикаты, такие как пироксены (их обобщенная формула ABZ 2 O 6 , где позиции "A" и "B" занимают катионы разных металлов, а "Z" - Al или Si), оливины (A 2+ 2 SiO 4 , где A 2+ = Fe, Mg, Mn, Ni) и иногда плагиоклазы (с общей формулой (Na,Ca)Al(Al,Si)Si 2 O 8). Их называют породообразующими минералами, поскольку они составляют основу большинства горных пород. Силикатные соединения другого типа, широко представленные на астероидах, - это гидросиликаты или слоистые силикаты. К ним принадлежат серпентины (с общей формулой A 3 Si 2 O 5? (OH), где A = Mg, Fe 2+ , Ni), хлориты (A 4-6 Z 4 O 10 (OH,O) 8 , где A и Z - это в основном катионы разных металлов) и ряд других минералов, которые содержат в своем составе гидроксил (ОН). Можно предполагать, что на астероидах встречаются не только простые окислы, соединения (например, сернистые) и сплавы железа и других металлов (в частности FeNi), углеродные (органические) соединения, но даже металлы и углерод в свободном состоянии. Об этом свидетельствуют результаты исследования метеоритного вещества, постоянно выпадающего на Землю (см. раздел "Метеориты").

7. Спектральные типы астероидов

На сегодняшний день выделены следующие основные спектральные классы или типы малых планет, обозначаемые латинскими буквами: A, B, C, F, G, D, P, E, M, Q, R, S, V и T. Дадим их краткую характеристику.

Астероиды типа A имеют достаточно высокое альбедо и самый красный цвет, что определяется значительным ростом к длинным волнам их отражательной способности. Они могут состоять из высокотемпературных оливинов (имеющих температуру плавления в пределах 1100-1900° С) или смеси оливина с металлами, которые соответствуют спектральным характеристикам этих астероидов. Напротив, у малых планет типов B, C, F, и G - низкое альбедо (тела B-типа несколько светлее) и почти плоский (или бесцветный) в видимом диапазоне, но резко спадающий на коротких волнах спектр отражения. Поэтому считается, что эти астероиды в основном сложены из низкотемпературных гидратированных силикатов (которые могут разлагаться или плавиться при температурах 500-1500° С) с примесью углерода или органических соединений, имеющих похожие спектральные характеристики. Астероиды с низким альбедо и красноватым цветом были отнесены к D- и P-типам (D-тела более красные). Такие свойства имеют силикаты, богатые углеродом или органическими веществами. Из них состоят, например, частички межпланетной пыли, которая, вероятно, заполняла и околосолнечный протопланетный диск еще до образования планет. На основе этого сходства можно предполагать, что D- и P-астероиды являются наиболее древними, малоизмененными телами пояса астероидов. Малые планеты E-типа имеют самые высокие значения альбедо (их поверхностное вещество может отражать до 50% падающего на них света) и слегка красноватый цвет. Такие же спектральные характеристики имеет минерал энстатит (это высокотемпературная разновидность пироксена) или другие силикаты, содержащие железо в свободном (неокисленном) состоянии, которые, следовательно, могут входить в состав астероидов E-типа. Астероиды, похожие по спектрам отражения на тела P- и E-типов, но по значению альбедо находящиеся между ними, относят к M-типу. Оказалось, что оптические свойства этих объектов очень похожи на свойства металлов в свободном состоянии или металлических соединений, находящихся в смеси с энстатитом или другими пироксенами. Таких астероидов сейчас насчитывается около 30. С помощью наземных наблюдений в последнее время был установлен такой интересный факт, как присутствие на значительной части этих тел гидратированных силикатов. Хотя причина возникновения такой необычной комбинации высокотемпературных и низкотемпературных материалов еще окончательно не установлена, можно предполагать, что гидросиликаты могли быть привнесены на астероиды M-типов при их столкновениях с более примитивными телами. Из оставшихся спектральных классов по альбедо и общей форме спектров отражения в видимом диапазоне астероиды Q-, R-, S- и V-типов достаточно похожи: у них относительно высокое альбедо (у тел S-типа несколько ниже) и красноватый цвет. Различия же между ними сводятся к тому, что присутствующая на их спектрах отражения в ближнем инфракрасном диапазоне широкая полоса поглощения около 1 микрона имеет разную глубину. Эта полоса поглощения характерна для смеси пироксенов и оливинов и положение ее центра и глубина зависят от долевого и общего содержания этих минералов в поверхностном веществе астероидов. С другой стороны, глубина любой полосы поглощения на спектре отражения силикатного вещества уменьшается при наличии в нем каких-либо непрозрачных частичек (например, углерода, металлов или их соединений), которые экранируют диффузно-отраженный (то есть пропускаемый через вещество и несущий информацию о его составе) свет. У данных астероидов глубина полосы поглощения у 1 мкм увеличивается от S- к Q-, R- и V-типам. В соответствии с вышесказанным, тела перечисленных типов (кроме V) могут состоять из смеси оливинов, пироксенов и металлов. Вещество же астероидов V-типа может включать наряду с пироксенами и полевые шпаты, а по составу быть похожим на земные базальты. И, наконец, к последнему, T-типу, относят астероиды, имеющие низкое альбедо и красноватый спектр отражения, который похож на спектры тел P- и D-типов, но по наклону занимающий между их спектрами промежуточное положение. Поэтому минералогический состав астероидов T-, P- и D-типов считается примерно одинаковым и соответствующим силикатам, богатым углеродом или органическими соединениями.

При изучении распределения астероидов разных типов в пространстве была обнаружена явная связь их предполагаемого химико-минерального состава с расстоянием до Солнца. Оказалось, что чем более простой минеральный состав вещества (чем больше в нем летучих соединений) имеют эти тела, тем дальше, как правило, они находятся. В целом более 75% всех астероидов относятся к C-типу и располагаются преимущественно в периферийной части пояса астероидов. Примерно 17% принадлежат к S-типу и преобладают во внутренней части пояса астероидов. Большая часть из оставшихся астероидов относится к M-типу и также движется главным образом в средней части астероидного кольца. Максимумы распределений астероидов этих трех типов находятся в пределах главного пояса. Максимум общего распределения астероидов E- и R-типов несколько выходит за пределы внутренней границы пояса в сторону Солнца. Интересно то, что суммарное распределение астероидов P- и D-типов стремится к своему максимуму в направлении к периферии главного пояса и выходит не только за пределы астероидного кольца, но и за пределы орбиты Юпитера. Не исключено, что распределение P- и D-астероидов главного пояса перекрывается с астероидными поясами Казимирчак-Полонской, находящимися между орбитами планет-гигантов.

В заключение обзора малых планет кратко изложим смысл общей гипотезы о происхождении астероидов различных классов, которая находит все больше подтверждений.

8. О происхождении малых планет

На заре формирования Солнечной системы, около 4,5 млрд. лет назад, из окружающего Солнца газо-пылевого диска вследствие турбулентных и других нестационарных явлений возникли сгустки вещества, которые при взаимных неупругих столкновениях и гравитационных взаимодействиях объединялись в планетезимали. С увеличением расстояния от Солнца уменьшалась средняя температура газо-пылевого вещества и, соответственно, менялся его общий химический состав. Кольцевая зона протопланетного диска, из которого впоследствии сформировался главный пояс астероидов, оказалась вблизи границы конденсации летучих соединений, в частности, водяного пара. Во-первых, это обстоятельство привело к опережающему росту зародыша Юпитера, находившегося рядом с указанной границей и ставшего центром аккумуляции водорода, азота, углерода и их соединений, покидавших более разогретую центральную часть Солнечной системы. Во-вторых, газо-пылевое вещество, из которого образовались астероиды, оказалось весьма неоднородным по составу в зависимости от расстояния до Солнца: относительное содержание в нем простейших силикатных соединений резко убывало, а содержание летучих соединений нарастало с удалением от Солнца в области от 2,0 до 3,5 а.е. Как уже говорилось, мощные возмущения со стороны быстро растущего зародыша Юпитера на пояс астероидов воспрепятствовали образованию в нем достаточно крупного прото-планетного тела. Процесс аккумуляции вещества там был остановлен тогда, когда успели сформироваться только несколько десятков планетозималей допланетного размера (около 500-1000 км), которые затем начали дробиться при столкновениях вследствие быстрого роста их относительных скоростей (от 0,1 до 5 км/с). Однако в этот период некоторые родительские тела астероидов или, по крайней мере, те из них, которые содержали высокую долю силикатных соединений и находились ближе к Солнцу, уже были разогреты или даже испытали гравитационную дифференциацию. Сейчас рассматриваются два возможных механизма разогрева недр таких прото-астероидов: как следствие распада радиоактивных изотопов, либо в результате действия индукционных токов, наведенных в веществе этих тел мощными потоками заряженных частиц из молодого и активного Солнца. Родительскими телами астероидов, сохранившимися по каким-то причинам до наших дней, как считают ученые, являются крупнейшие астероиды 1 Церера и 4 Веста, основные сведения о которых даны в Табл. 1. В процессе гравитационной дифференциации прото-астероидов, испытавших достаточное нагревание для плавления их силикатного вещества, выделились металлические ядра, и другие более легкие силикатные оболочки, а в некоторых случаях даже базальтовая кора (например, у 4 Весты), как у планет земной группы. Но все же, поскольку вещество в зоне астероидов содержало значительное количество летучих соединений, его средняя температура плавления была относительно низкой. Как было показано с помощью математического моделирования и численных расчетов, температура плавления такого силикатного вещества могла быть в диапазоне 500-1000° C. Итак, после дифференциации и остывания родительские тела астероидов испытали многочисленные столкновения не только между собой и своими обломками, но и с телами, вторгавшимися в пояс астероидов из зон Юпитера, Сатурна и более дальней периферии Солнечной системы. В результате длительной ударной эволюции прото-астероиды были раздроблены на огромное количество более мелких тел, наблюдающихся сейчас как астероиды. При относительных скоростях около нескольких километров в секунду столкновения тел, состоявших из нескольких силикатных оболочек с различной механической прочностью (чем больше в твердом веществе содержится металлов, тем более оно прочное), приводили к "сдиранию" с них и дроблению до мелких фрагментов в первую очередь наименее прочных внешних силикатных оболочек. Причем считается, что астероиды тех спектральных типов, которые соответствуют высокотемпературным силикатам, происходят из разных силикатных оболочек их родительских тел, прошедших плавление и дифференциацию. В частности, астероиды M- и S-типов могут представлять собой целиком ядра родительских тел (как, например, S-астероид 15 Эвномия и M-астероид 16 Психея с диаметрами около 270 км) или их осколки по причине самого высокого содержания в них металлов. Астероиды A- и R- спектральных типов могут быть осколками промежуточных силикатных оболочек, а E- и V-типов - внешних оболочек таких родительских тел. На основе анализа распределений в пространстве астероидов E-, V-, R-, A-, M- и S- типов можно также сделать вывод о том, что они подверглись наиболее интенсивной тепловой и ударной переработке. Подтверждением этому, вероятно, можно считать совпадение с внутренней границей главного пояса или близость к ней максимумов распределения астероидов этих типов. Что же касается астероидов других спектральных типов, то они считаются либо частично измененными (метаморфическими) вследствие столкновений или локальных нагреваний, что не привело к их общему плавлению (T, B, G и F), либо примитивными и мало измененными (D, P, C и Q). Как уже отмечалось, количество астероидов указанных типов растет к периферии главного пояса. Несомненно то, что все они также испытывали столкновения и дробление, но этот процесс, вероятно, был не настолько интенсивным, чтобы заметным образом повлиять на их наблюдаемые характеристики и, соответственно, на химико-минеральный состав. (Этот вопрос также будет рассмотрен в разделе "Метеориты"). Однако, как показывает численное моделирование столкновений силикатных тел астероидных размеров, многие из существующих сейчас астероидов после взаимных столкновений могли реаккумулировать (то есть объединиться из оставшихся фрагментов) и поэтому представляют собой не монолитные тела, а движущиеся "груды булыжников". Имеются многочисленные наблюдательные подтверждения (по специфическим изменениям блеска) наличия у ряда астероидов гравитационно связанных с ними маленьких спутников, которые, вероятно, также возникли при ударных событиях как фрагменты сталкивавшихся тел. Этот факт, хотя и вызывал жаркие дискуссии среди ученых в прошлом, был убедительно подтвержден на примере астероида 243 Ида. С помощью космического аппарата "Галилео" удалось получить изображения этого астероида вместе с его спутником (который позднее назвали Дактилем), которые представлены на рисунках 2 и 3.

9. О том, чего мы пока не знаем

В исследованиях астероидов еще остается много неясного и даже загадочного. Во-первых, это общие проблемы, относящиеся к происхождению и эволюции твердого вещества в главном и других астероидных поясах и связанные с возникновением всей Солнечной системы. Их решение имеет важное значение не только для правильных представлениях о нашей системе, но и для понимания причин и закономерностей возникновения планетных систем в окрестностях других звезд. Благодаря возможностям современной наблюдательной техники удалось установить, что у ряда соседних звезд имеются крупные планеты типа Юпитера. На очереди стоит обнаружение у этих и других звезд меньших по размеру планет земного типа. Есть также и вопросы, на которые можно ответить только при условии подробного изучения отдельных малых планет. По существу, каждое из этих тел уникально, так как имеет свою собственную, иногда специфическую, историю. Например, астероиды-члены каких-то динамических семейств (например, Фемиды, Флоры, Гильды, Эос и других), имеющие, как говорилось, общее происхождение, могут заметно отличаться по оптическим характеристикам, что указывает на какие-то их особенности. С другой стороны очевидно, что для детального исследования всех, достаточно крупных астероидов только в главном поясе потребуется очень много времени и сил. И все-таки, вероятно, только путем сбора и накопления подробной и точной информации о каждом из астероидов, а затем с помощью ее обобщения возможно постепенное уточнение понимания природы этих тел и основных закономерностей их эволюции.

СПИСОК ЛИТЕРАТУРЫ:

1. Угроза с неба: рок или случайность? (Под ред. А.А. Боярчука). М: "Космосинформ", 1999, 218 с.

2. Флейшер М. Словарь минеральных видов. М: "Мир", 1990, 204 с.

Составное изображение (в масштабе) астероидов, снятых в высоком разрешении. На 2011 год это были, от большего к меньшему: (4) Веста, (21) Лютеция, (253) Матильда, (243) Ида и его спутник Дактиль, (433) Эрос, (951) Гаспра, (2867) Штейнс, (25143) Итокава

Астероид (распространённый до 2006 года синоним - малая планета ) - относительно небольшое небесное тело , движущееся по орбите вокруг . Астероиды значительно уступают по массе и размерам , имеют неправильную форму и не имеют , хотя при этом и у них могут быть .

Определения

Сравнительные размеры астероида (4) Веста, карликовой планеты Церера и Луны. Разрешение 20 км на пиксель

Термин астероид (от др.-греч. ἀστεροειδής - «подобный звезде», из ἀστήρ - «звезда» и εἶδος - «вид, наружность, качество») был придуман композитором Чарлзом Бёрни и введён Уильямом Гершелем на основании того, что эти объекты при наблюдении в выглядели как точки - в отличие от планет, которые при наблюдении в телескоп выглядят дисками. Точное определение термина «астероид» до сих пор не является установившимся. До 2006 года астероиды также называли малыми планетами.

Главный параметр, по которому проводится классификация, - размер тела. Астероидами считаются тела с диаметром более 30 м, тела меньшего размера называют .

В 2006 году Международный астрономический союз отнёс большинство астероидов к .

Астероиды в Солнечной системе

Главный пояс астероидов (белый цвет) и троянские астероиды Юпитера (зелёный цвет)

В настоящий момент в Солнечной системе обнаружены сотни тысяч астероидов. По состоянию на 11 января 2015 г. в базе данных насчитывалось 670 474 объекта, из которых для 422 636 точно определены орбиты и им присвоен официальный номер, более 19 000 из них имели официально утверждённые наименования. Предполагается, что в Солнечной системе может находиться от 1,1 до 1,9 миллиона объектов, имеющих размеры более 1 км. Большинство известных на данный момент астероидов сосредоточено в пределах , расположенного между орбитами и .

Самым крупным астероидом в Солнечной системе считалась , имеющая размеры приблизительно 975×909 км, однако с 24 августа 2006 года она получила статус . Два других крупнейших астероида (2) Паллада и имеют диаметр ~500 км. (4) Веста является единственным объектом пояса астероидов, который можно наблюдать невооружённым глазом. Астероиды, движущиеся по другим орбитам, также могут быть наблюдаемы в период прохождения вблизи (например, (99942) Апофис).

Общая масса всех астероидов главного пояса оценивается в 3,0-3,6·10 21 кг, что составляет всего около 4 % от массы . Масса Цереры - 9,5·10 20 кг, то есть около 32 % от общей, а вместе с тремя крупнейшими астероидами (4) Веста (9 %), (2) Паллада (7 %), (10) Гигея (3 %) - 51 %, то есть абсолютное большинство астероидов имеют ничтожную по астрономическим меркам массу.

Изучение астероидов

Изучение астероидов началось после открытия в 1781 году Уильямом Гершелем планеты . Его среднее гелиоцентрическое расстояние оказалось соответствующим правилу Тициуса - Боде.

В конце XVIII века Франц Ксавер организовал группу из 24 астрономов. С 1789 года эта группа занималась поисками планеты, которая, согласно правилу Тициуса-Боде, должна была находиться на расстоянии около 2,8 астрономических единиц от Солнца - между орбитами Марса и Юпитера. Задача состояла в описании координат всех звёзд в области зодиакальных созвездий на определённый момент. В последующие ночи координаты проверялись, и выделялись объекты, которые смещались на большее расстояние. Предполагаемое смещение искомой планеты должно было составлять около 30 угловых секунд в час, что должно было быть легко замечено.

По иронии судьбы первый астероид, Церера, был обнаружен итальянцем Пиацци, не участвовавшим в этом проекте, случайно, в 1801 году, в первую же ночь столетия. Три других - (2) Паллада, (3) Юнона и (4) Веста были обнаружены в последующие несколько лет - последний, Веста, в 1807 году. Ещё через 8 лет бесплодных поисков большинство астрономов решило, что там больше ничего нет, и прекратило исследования.

Однако Карл Людвиг Хенке проявил настойчивость, и в 1830 году возобновил поиск новых астероидов. Пятнадцать лет спустя он обнаружил Астрею, первый новый астероид за 38 лет. Он также обнаружил Гебу менее чем через два года. После этого другие астрономы подключились к поискам, и далее обнаруживалось не менее одного нового астероида в год (за исключением 1945 года).

В 1891 году Макс Вольф впервые использовал для поиска астероидов метод астрофотографии, при котором на фотографиях с длинным периодом экспонирования астероиды оставляли короткие светлые линии. Этот метод значительно ускорил обнаружение новых астероидов по сравнению с ранее использовавшимися методами визуального наблюдения: Макс Вольф в одиночку обнаружил 248 астероидов, начиная с (323) Брюсия, тогда как до него было обнаружено немногим более 300. Сейчас, век спустя, 385 тысяч астероидов имеют официальный номер, а 18 тысяч из них - ещё и имя.

В 2010 г. две независимые группы астрономов из США, Испании и Бразилии заявили, что одновременно обнаружили водяной лёд на поверхности одного из самых крупных астероидов главного пояса - Фемиды. Это открытие позволяет понять происхождение воды на Земле. В начале своего существования Земля была слишком горяча, чтобы удержать достаточное количество воды. Это вещество должно было прибыть позднее. Предполагалось, что воду на Землю могли занести кометы, но изотопный состав земной воды и воды в кометах не совпадает. Поэтому можно предположить, что вода на Землю была занесена при её столкновении с астероидами. Исследователи также обнаружили на Фемиде сложные углеводороды, в том числе молекулы - предшественники жизни.

Именование астероидов

Сначала астероидам давали имена героев римской и греческой мифологии, позднее открыватели получили право называть их как угодно - например, своим именем. Вначале астероидам давались преимущественно женские имена, мужские имена получали только астероиды, имеющие необычные орбиты (например, Икар, приближающийся к Солнцу ближе ). Позднее и это правило перестало соблюдаться.

Получить имя может не любой астероид, а лишь тот, орбита которого более или менее надёжно вычислена. Были случаи, когда астероид получал имя спустя десятки лет после открытия. До тех пор, пока орбита не вычислена, астероиду даётся временное обозначение, отражающее дату его открытия, например, 1950 DA. Цифры обозначают год, первая буква - номер полумесяца в году, в котором астероид был открыт (в приведённом примере это вторая половина февраля). Вторая буква обозначает порядковый номер астероида в указанном полумесяце, в нашем примере астероид был открыт первым. Так как полумесяцев 24, а английских букв - 26, в обозначении не используются две буквы: I (из-за сходства с единицей) и Z. Если количество астероидов, открытых в течение полумесяца, превысит 24, вновь возвращаются к началу алфавита, приписывая второй букве индекс 2, при следующем возвращении - 3, и т. д.

После получения имени официальное именование астероида состоит из числа (порядкового номера) и названия - (1) Церера, (8) Флора и т. д.

Определение формы и размеров астероида

Астероид (951) Гаспра. Одно из первых изображений астероида, полученных с космического аппарата. Передано космическим зондом «Галилео» во время его пролёта мимо Гаспры в 1991 году (цвета усилены)

Первые попытки измерить диаметры астероидов, используя метод прямого измерения видимых дисков с помощью нитяного микрометра, предприняли Уильям Гершель в 1802 и Иоганн Шрётер в 1805 годах. После них в XIX веке аналогичным способом проводились измерения наиболее ярких астероидов другими астрономами. Основным недостатком данного метода были значительные расхождения результатов (например, минимальные и максимальные размеры Цереры, полученные разными учёными, отличались в десять раз).

Современные способы определения размеров астероидов включают в себя методы поляриметрии, радиолокационный, спекл-интерферометрии, транзитный и тепловой радиометрии.

Одним из наиболее простых и качественных является транзитный метод. Во время движения астероида относительно Земли он иногда проходит на фоне отдалённой звезды, это явление называется покрытие звёзд астероидом. Измерив длительность снижения яркости данной звезды и зная расстояние до астероида, можно достаточно точно определить его размер. Данный метод позволяет достаточно точно определять размеры крупных астероидов, вроде Паллады.

Метод поляриметрии заключается в определении размера на основании яркости астероида. Чем больше астероид, тем больше солнечного света он отражает. Однако яркость астероида сильно зависит от альбедо поверхности астероида, что в свою очередь определяется составом слагающих его пород. Например, астероид Веста из-за высокого альбедо своей поверхности отражает в 4 раза больше света, чем Церера и является самым заметным астероидом на небе, который иногда можно наблюдать невооружённым глазом.

Однако само альбедо тоже можно определить достаточно легко. Дело в том, что чем меньше яркость астероида, то есть чем меньше он отражает солнечной радиации в видимом диапазоне, тем больше он её поглощает и, нагреваясь, излучает её затем в виде тепла в инфракрасном диапазоне.

Метод поляриметрии может быть также использован для определения формы астероида, путём регистрации изменения его блеска в процессе вращения, так и для определения периода этого вращения, а также для выявления крупных структур на поверхности. Кроме того, результаты, полученные с помощью инфракрасных телескопов, используются для определения размеров методом тепловой радиометрии.

Классификация астероидов

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью.

Группы орбит и семейства

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы - относительно свободные образования, тогда как семейства - более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Спектральные классы

В 1975 году Кларк Р. Чапмен (Clark R. Chapman), Дэвид Моррисон (David Morrison) и Бен Целлнер (Ben Zellner) разработали систему классификации астероидов, опирающуюся на показатели цвета, альбедо и характеристики спектра отражённого солнечного света. Изначально эта классификация определяла только три типа астероидов:

Класс С - углеродные, 75 % известных астероидов.
Класс S - силикатные, 17 % известных астероидов.
Класс M - металлические, большинство остальных.

Этот список был позже расширен и число типов продолжает расти по мере того, как детально изучается все больше астероидов:

Класс A - характеризуются достаточно высоким альбедо (между 0,17 и 0,35) и красноватым цветом в видимой части спектра.
Класс B - в целом относятся к астероидам класса C, но почти не поглощают волны ниже 0,5 мкм, а их спектр слегка голубоватый. Альбедо в целом выше, чем у других углеродных астероидов.
Класс D - характеризуются очень низким альбедо (0,02−0,05) и ровным красноватым спектром без чётких линий поглощения.
Класс E - поверхность этих астероидов содержит в своём составе такой минерал, как энстатит и может иметь сходство с ахондритами.
Класс F - в целом схожи с астероидами класса B, но без следов «воды».
Класс G - характеризуется низким альбедо и почти плоским (и бесцветным) в видимом диапазоне спектром отражения, что свидетельствует о сильном ультрафиолетовом поглощении.
Класс P - как и астероиды класса D, характеризуются довольно низким альбедо, (0,02−0,07) и ровным красноватым спектром без чётких линий поглощения.
Класс Q - на длине волны 1 мкм в спектре этих астероидов присутствуют яркие и широкие линии оливина и пироксена и, кроме того, особенности, указывающие на наличие металла.
Класс R - характеризуются относительно высоким альбедо и красноватый спектром отражения на длине 0,7 мкм.
Класс T - характеризуется низким альбедо и красноватым спектром (с умеренным поглощением на длине волны 0,85 мкм), который похож на спектр астероидов P- и D- классов, но по наклону занимающий промежуточное положение.
Класс V - астероиды этого класса умеренно яркие и довольно близки к более общему S классу, которые также в основном состоят из камня, силикатов и железа (хондритов), но отличаются S более высоким содержанием пироксена.
Класс J - это класс астероидов, образовавшихся, предположительно, из внутренних частей Весты. Их спектры близки к спектрам астероидов V класса, но их отличает особо сильные линии поглощения на длине волны 1 мкм.

Следует учитывать, что количество известных астероидов, отнесённых к какому-либо типу, не обязательно соответствует действительности. Некоторые типы достаточно сложны для определения, и тип определённого астероида может быть изменён при более тщательных исследованиях.

Проблемы спектральной классификации

Изначально спектральная классификация основывалась на трёх типах материала, составляющего астероиды:

Класс С - углерод (карбонаты).
Класс S - кремний (силикаты).
Класс M - металл.

Однако существуют сомнения в том, что такая классификация однозначно определяет состав астероида. В то время, как различный спектральный класс астероидов указывает на их различный состав, нет никаких доказательств того, что астероиды одного спектрального класса состоят из одинаковых материалов. В результате учёные не приняли новую систему, и внедрение спектральной классификации остановилось.

Распределение по размерам

Количество астероидов заметно уменьшается с ростом их размеров. Хотя это в целом соответствует степенному закону, есть пики при 5 км и 100 км, где больше астероидов, чем ожидалось бы в соответствии логарифмическому распределению.

Образование астероидов

В июле 2015 года было сообщено об открытии камерой DECam телескопа имени Виктора Бланко 11-го и 12-го троянцев Нептуна - 2014 QO441 и 2014 QP441. Таким образом, число троянцев в точке L4 Нептуна увеличилось до 9. Также этим обзором было обнаружено 20 других объектов, получивших обозначения Центра малых планет, в том числе 2013 RF98, обладающий одним из самых больших периодов обращения.

Объектам этой группы даются имена кентавров античной мифологии.

Первым открытым кентавром был Хирон (1977). При приближении к перигелию у него наблюдается кома, характерная для комет, поэтому Хирон считается по классификации одновременно и кометой (95P/Chiron), и астероидом (2060 Chiron), хотя он существенно больше типичной кометы.



Накатал за пару бессонных ночей рассказ о том, как называли и называют астероиды. Имхо, интересная история как с точки зрения развития астрономии, так и в плане демонстрации того, что даже в столь точной и благородной науке не всё бывает гладко.

Для начала напомню базовые вещи. Астероидами (термин ввёл Уильям Гершель в 1802 году) или малыми планетами называются малые тела Солнечной системы (недостаточно большие, чтобы считаться планетой, но больше тридцати метров, меньшие объекты называют метеороидами) , обращающиеся вокруг Солнца и не являющиеся кометами (для комет характерна газообразующая активность при приближении к Солнцу; при этом отдельные астероиды являются, по сути, «выродившимися», «потухшими» кометами) .

Первым открытым астероидом стала Церера (она была открыта 1 января 1801 года). Поначалу её считали полноценной планетой (занимающей положение между Марсом и Юпитером), потом стало ясно, что она является лишь одним из представителей большой группы небесных тел, а уже в 2006 году её переклассифицировали как карликовую планету. Последующие астероиды были открыты в 1802 (Паллада), 1804 (Юнона) и 1807 (Веста) годах. Затем наступил перерыв до 1845 года (когда была открыта Астрея), а с 1847 года астероиды стали открывать уже по несколько в год. К началу XX века было известно уже более четырёх с половиной сотен астероидов; понятно, что в дальнейшем частота их открытий постоянно возрастала, в конце XX века этот рост стал взрывным. По состоянию на 9 июля 2017 года известно 734274 астероида, из которых 496815 имеют постоянные номера (то есть, их орбита считается надёжно вычисленной), тогда как собственные имена имеют лишь 21009 астероидов (инфа от Центра малых планет).


Изображение взято отсюда: https://commons.wikimedia.org/wiki/File:Minor_planet_count.svg

Понятно, что обозначение и именование астероидов является довольно серьёзной проблемой (раз уж количество астероидов столь велико). О решениях этой проблемы я и постараюсь рассказать. Основная часть текста базируется на книге Schmadel, Lutz D. Dictionary of Minor Planet Names. - Fifth Revised and Enlarged Edition. - B., Heidelberg, N. Y.: Springer, 2003. - P. 298. - ISBN 3-540-00238-3 (не перевод, а вольный пересказ), плюс привлекалась информация из википедии. Кому интересно - читаем дальше.


Формальные обозначения астероидов

До середины XIX столетия номенклатурной проблемы в отношении астероидов не существовало. Церера, Паллада, Юнона и Веста (первые открытые астероиды) упоминались просто по именам. Проблема возникла лишь примерно в 1850-х годах в связи со значительным ростом числа открытых астероидов. Поначалу казалось возможным просто давать каждому астероиду собственное имя и создавать для каждого из них отдельный астрономический символ (то есть, действовать так же, как ранее поступали с большими планетами). Однако практика присуждения символов быстро показала свою несостоятельность. Использование этих символов оказалось как затруднительным с точки зрения книгоиздательской техники, так и совершенно непрактичным с точки зрения нагрузки на память (упомнить все эти символы, учитывая дальнейший рост их числа, представлялось невозможным). Вероятней всего, последним астрономом, присвоившим отдельный символ астероиду (а именно астероиду (32) Фидес ), был Карл Теодор Роберт Лютер (Luther, 1855).

Вместо использования символов была введена система порядковых номеров. Впервые подобную идею (с помещением порядкового номера астероида в кружок) высказал Иоганн Франц Энке (Enke, 1851) на страницах «Berliner astronomisches Jahrbuch» (далее - BAJ ). Первое практическое применение данной системы принадлежит американскому астроному Джеймсу Фергюсону (Ferguson, 1852), который обозначил Психею как ⑯ Психея (астероид Психея был открыт в 1852 году; в настоящее время порядковый номер астероида помещается в круглые скобки - (16) Психея ). Порядковый номер присуждался редактором журнала «Astronomische Nachrichten» (далее - AN ) соответственно дате первой публикации об открытии нового астероида, что вскоре привело к неприятным противоречиям: так, в начале октября 1857 года Фергюсон открыл астероид Виргиния, которому присвоили порядковый номер 50, тогда как астероиду, открытому Гольдшмидтом ещё в сентябре того же года (Мелета), был присвоен порядковый номер 56. Астрономическое сообщество пришло к выводу, что назначение астроидам собственного имени может и отодвигаться на некоторый срок, тогда как традиция присуждения порядковых номеров строго в соответствии с хронологией открытий должна соблюдаться неукоснительно.

Вопросы наименования и присуждения порядковых номеров дополнительно осложнялись тем, что сложно было судить, кого именно считать первооткрывателем и кто именно имеет право давать имя новому астероиду. Рудольфу Вольфу (Wolf, 1859) принадлежит следующее замечание: «Открытие Урана не может быть приписано Флемстиду, открытие Нептуна не может быть приписано Лаланду, точно так же открытие астероида-56 нельзя приписать Гольдшмидту: первооткрыватель планеты - не тот, кто её впервые увидел или пронаблюдал, а тот, кто впервые распознал в ней новый небесный объект». Случаи, когда первый наблюдатель не осознал природу наблюдаемого объекта, а основная роль в открытии принадлежала лицу, впервые рассчитавшему орбиту нового тела, уже тогда были нередкими. Вопросы, связанные с этими деталями, остаются актуальными и по сей день.



Снимок Цереры в натуральном цвете, сделанный космическим аппаратом «Dawn» 4 мая 2015 года.

Быстрый рост числа открытий новых астероидов заставил редакции журналов BAJ и AN присуждать порядковые номера как можно скорее, соответственно датам открытий. Несмотря на то, что сама идея о неукоснительном соответствии между порядковыми номерами и хронологией открытий не вызывала возражений, быстрый рост числа новооткрытых астероидов вскоре породил новые сложности. Значительное число новых астероидов наблюдалось лишь спорадически, без уверенного вычисления и подтверждения их орбит - как же следовало поступать с ними? Присуждать им какие-либо порядковые номера или нет? Адальберт Крюгер (Kruger, 1892) предложил следующую систему: «Отныне редактор AN будет присуждать каждой новой планете [подразумеваются астероиды] врéменное обозначение следующего вида: 18xx A, B, C... согласно дате регистрации [сообщения об открытии] в Центральном Бюро Астрономических Телеграмм. Окончательный порядковый номер будет присуждаться лишь позже редактором BAJ. Это позволит исключить придание порядковых номеров тем планетам [т. е., астероидам], чьи орбитальные элементы не могут быть рассчитаны из-за недостатка данных». То есть, первый астероид, предположительно открытый в 1893 году, получал врéменное обозначение 1893 A, второй открытый в этом же году - 1893 B, и так далее. Однако уже через год, в 1893 году, стало ясно, что одних лишь заглавных букв не хватит, в связи с чем было решено расширить эту систему посредством удвоения букв: так, за астероидом 1893 Z должен был следовать астероид 1893 AA, за ним - 1893 AB, и так далее. Система была принята в обиход, но следует заметить, что в годы Первой мировой войны также использовались отдельные «неофициальные» системы; в частности, астрономы Симеизской обсерватории (это та, которая у нас в Крыму), некоторое время работавшие без надёжной связи с остальным астрономическим миром, были вынуждены ввести свою собственную систему врéменной нумерации новых астероидов.

В 1924 году (учитывая всё возрастающее число новооткрытых астероидов) была предложена новая система врéменных обозначений: сначала идёт год открытия, а после пробела латинская буква, обозначающая полумесяц открытия (A - для первой половины января, B - для второй половины января, C - для первой половины февраля и так далее, исключая букву I, так как её можно спутать с единицей); к ней присоединяется ещё одна латинская буква, обозначающая очерёдность открытия в соответствующем полумесяце (опять же, исключая букву I). Так, например, обозначение 1926 AD означает, что астероид был открыт четвёртым по счёту в первой половине января 1926 года, а обозначение 1927 DG - что астероид был открыт седьмым по счёту во второй половине февраля 1927 года. Почти сразу же (Kopff, 1924) эта система была дополнительно расширена до нынешнего состояния («на тот невероятный случай (sic!!!) - как писал сам Август Копфф - если за полумесяц будет открыто более 25 астероидов »): сейчас, если за полумесяц открыто более 25 малых планет (26 букв латинского алфавита минус одна, I не используется), то к обозначению прибавляют цифровой индекс, который показывает, сколько раз была использована алфавитная последовательность во второй позиции (таким образом число открытий в этой половине месяца определяется умножением индекса на 25 плюс порядковый номер второй буквы в обозначении астероида). То есть, двадцать пятый астероид, открытый за первую половину января 1950 года, получит обозначение 1950 AZ, тогда как следующий (26-й) получит обозначение 1950 AA 1 , 27-й - 1950 AB 1 , 51-й - 1950 AA 2 и так далее. Проверьте свою сообразительность и ответьте на вопрос: в каком именно полумесяце и каким по порядку в этом полумесяце было открыто небесное тело 2003 VB 12 ? Правильный ответ я приведу в самом конце записи:).

С 1952 года, согласно предложению американского астронома Пауля Хергета, постоянные (окончательные) порядковые номера стали присуждаться лишь в случае соблюдения ряда условий (Herget, 1952). Орбитальные параметры этих объектов должны были быть вычислены:
а) на основании наблюдений в как минимум двух противостояниях (данное требование можно исключить, если перигелийное расстояние у наблюдаемого тела меньше, чем 1,67 а. е.);
б) с учётом возмущений;
в) удовлетворяя всем доныне произведенным наблюдениям.

По прошествии времени требования к присвоению постоянного порядкового номера ещё более ужесточились: за исключением объектов с довольно необычными орбитами или же могущими сближаться с Землёй для присвоения постоянного номера требовалось уже тщательное наблюдение объекта в как минимум трёх противостояниях. В 1991 году американский астроном Брайан Марсден (бывший тогда руководителем Центра малых планет - центральной на сегодня организацией, занимающейся систематизацией данных по новым открытым телам Солнечной системы) выдвинул требование даже о четырёх и более наблюдениях в противостоянии для присвоения постоянного порядкового номера (исключая объекты, сближающиеся с Землёй или постоянно уверенно наблюдаемые).

Развитие традиций по именованию астероидов

Названия первых астероидов (Церера, Паллада, Юнона и Веста) следовали классической традиции, по которой небесные тела назывались именами античных (греческих и римских) богов или мифологических персонажей. Поначалу казалось, что эта традиция будет незыблемой, однако название уже двенадцатого астероида Виктория (открыт в 1850 году; формально имя соответствовало римской богине победы, но у астрономического сообщества были серьёзные подозрения в том, что первооткрыватель, британец Джон Рассел Хайнд, дал это имя в честь королевы Виктории) породило дискуссии о том, допустимо ли называть астероиды в честь действующих правителей. Одним из наиболее активных радетелей за исключительно «классические» названия был немецкий астроном Карл Теодор Роберт Лютер (Luther, 1861), постулировавший следующее: «Раз уж мы считаем необходимым давать собственные названия звёздам, кометам, спутникам Сатурна и Урана и даже горам на Луне, то кажется разумным предпочитать названия из классической мифологии. Неклассические имена неразумны с точки зрения длительного использования, вместо них уж лучше использовать лишь нумерацию».

Столь догматичный подход немедленно столкнулся с суровой критикой. Карл Август Штейнгейль (Steinheil, 1861) полемизировал с Лютером: «В чём преимущество использования лишь классических имён? Неужели новые планеты должны лишь напоминать нам, что мы когда-то посещали классическую школу? Неужели астрономия чем-то столь обязана филологии, чтобы помнить все эти имена?»



Снимок Весты (самого яркого из астероидов), выполненный космическим аппаратом «Dawn» в 2012 году.

Несмотря на то, что категоричный подход Лютера встретил немало возражений, тенденция присваивать новооткрытым астероидам имена из греко-римской мифологии довольно долго преобладала. Разумеется, было и немало исключений: наиболее ярким примером может послужить астероид (45) Евгения , открытый в 1857 году и названный в честь французской императрицы Евгении де Монтихо, супруги Наполеона III (первый случай, когда астероиду было присвоено имя в честь ещё живущего человека). Астероид (51) Немауза (открытый в 1858 году) был назван по латинскому названию французского города Ним. Астероид (77) Фригга (открытый в 1862 году) был назван в честь Фригг, жены Одина и верховной богини в германо-скандинавской мифологии. Астероид (89) Юлия (открытый в 1866 году) был назван в честь христианской святой Юлии Корсиканской, умершей в V веке. Астероид (88) Фисба был назван в честь героини вавилонского легендариума (Пирам и Фисба - вавилонский аналог Ромео и Джульетты). И т. д. и т. п. Тем не менее заметим, что даже названия, не имевшие прямого отношения к греко-римской мифологии, всё же по традиции переводились в форму женского рода.

Борьба за исключительно «классические» имена, тем не менее, продолжалась. Тот же Лютер в 1878 году заявлял: «Нынешние названия астероидов стали более чем разномастной смесью. Кажется весьма целесообразным вернуться к старым предпочтениям, к классическим мифологическим именам. Любые намёки должны избегаться - ради чести нашей науки». Ему вторил Генрих Брунс (Bruhns, 1878): «Лучшим решением представляется избегать любые имена, вызывающие ассоциации с ныне живущими людьми и текущими событиями. Лишь классические имена получат всеобщее признание».

Когда количество открытых астероидов перевалило за четыре сотни, поддерживать «мифологическую» традицию стало ещё сложнее, чем ранее. Неофициальное, но пользовавшееся широким признанием правило в отношении именования новых астероидов было сведено лишь к требованию использовать исключительно женские имена. Юлиус Баушингер (Bauschinger, 1899; он, к слову, был консультантом докторской диссертации Альфреда Вегенера, который позже выдвинул теорию дрейфа материков) в бытность свою директором Astronomisches Rechen-Institut даже почти угрожал: «Имеются причины просить первооткрывателей не отклоняться от традиции использовать женские имена, поскольку это правило было нарушено - небеспричинно - лишь один раз в отношении астероида (433) Эрос . Мужские названия астероидов не будут приниматься BAJ». С Баушингером полностью соглашался также Генрих Крейц (Kreutz, 1899), бывший тогда редактором AN, заявивший, что мужские имена не будут рассматриваться редакцией AN. Следует пояснить, что астероид (433) Эрос , открытый в 1898 году Карлом Виттом, действительно стал первым астероидом с классическим мужским именем, но ему это тогда «простили» за то, что его орбита оказалась крайне необычной для тогдашних представлений: если «классические астероиды» обращались лишь между орбитами Марса и Юпитера, то Эрос стал первым открытым телом из группы «околоземных астероидов», перигелий его орбиты лежит внутри орбиты Марса.



Астероид Эрос (серия фотографий, выполненная космическим аппаратом NEAR в 2000 году, демонстрирует его вращение).

Традиция наименования астероидов лишь женскими именами (даже если женское имя создавалось лишь искусственно путём прибавления окончаний -a или -ia ) продержалась довольно долго - примерно до конца Второй мировой войны (хотя её и неоднократно нарушали). Для примера, согласно этой традиции астероид 449 (открытый в 1899 году и получивший название в честь Гамбурга) получил имя Гамбурга , астероид 662 (открытый в 1908 году и получивший название в честь города Ньютон из штата Массачусетс) получил имя Ньютония , а астероид 932, открытый в 1920 году и названный в честь Герберта Гувера, получил название Гуверия , и т. д., примеров много. Окончательный уход от этой традиции был задекларирован в циркуляре Центра малых планет под номером 837 (1952 год): «Традиция придания женских окончаний к мужским именам уже имеет множество исключений. Отныне предлагаемые имена не будут отвергаться или модифицироваться, если они будут иметь мужскую форму».

Нынешние предпочтения в отношении именования астероидов (назвать их прямо жёсткими правилами сложно) были сформулированы в 1985 году. Сейчас работает следующая процедура:
1. Сначала новооткрытому телу дают врéменное буквенно-цифровое обозначение (см. выше).
2. Когда орбита нового тела определена достаточно уверенно (как правило, для этого требуется наблюдение объекта в четырёх и более противостояниях), Центр малых планет присуждает ей постоянный номер.
3. После присуждения постоянного порядкового номера первооткрывателю предлагается дать телу собственное название. Первооткрыватель должен сопроводить своё название кратким объяснением причин, по которым он считает данное имя достойным выбора.
4. Предложенные названия рассматриваются и утверждаются рабочей группой Международного Астрономического Союза по номенклатуре малых тел.

К предлагаемым именам предъявляются следующие формальные требования (не всегда соблюдаемые, но всё же крайне желательные) :
1. Название не должно состоять из более чем 16 букв.
2. Весьма желательно, чтобы оно состояло из одного слова.
3. Слово должно быть произносимым и иметь смысл хотя бы на каком-нибудь языке (то есть, просто случайный набор букв вроде Azzzxwfhu , вероятней всего, будет отвергнут) .
4. Название не должно быть оскорбительным или вызывать неприятные ассоциации.
5. Новое название не должно быть слишком похожим на уже имеющиеся имена других объектов Солнечной системы.
6. Клички домашних питомцев не одобряются (хотя были прецеденты, когда астероиды получали имена именно в честь любимцев первооткрывателей) .
7. Названия коммерческого типа (торговые марки и т. п.) недопустимы.
8. Названия, основанные на именах политиков или связанные с какими-либо военными действиями допускаются к рассмотрению только если после смерти персонажа или события прошло 100 лет.
9. В отличие от комет, астероиды не называются автоматически в честь их первооткрывателей (впрочем, нередко первооткрыватели называли разные астероиды в честь друг друга). Однако, и тут имеется исключение: астроид (96747) Кресподасилва был назван в честь своей первооткрывательницы, Lucy d’Escoffier Crespo da Silva, которая покончила с собой вскоре после своего открытия в 22 года.

Для именования отдельных групп астероидов (характеризуемых определёнными свойствами) по-прежнему придерживаются более строгих традиций. Например, так называемые троянские астероиды (находящиеся в резонансе 1:1 с Юпитером) получают имена в честь героев Троянской войны; транснептуновые объекты со стабильными и долгоживущими орбитами получают мифологические имена, так или иначе связанные с сотворением мира, и др.

Название становится официальным после его обнародования в циркуляре Центра малых планет. Международный Астрономический Союз не присуждает названия за деньги.

По состоянию на 9 июля 2017 года из 734274 известных астероидов окончательные номера присвоены 496815 астероидам, тогда как имена собственные имеются лишь у 21009 из них (то есть, лишь у четырёх процентов от общего числа астероидов с постоянными номерами). Большинство имён астероидов состоит из семи букв (информация на 2003 год). Правило о том, что длина названия не должна превышать 16 символов, было нарушено один раз в случае с астероидом (4015) Wilson-Harrington .

Интересные факты

Первым астероидом с названием, не связанным с античной мифологией, стал (20) Массалия (открытый в 1852 году и названный греческим именем города Марсель).

Первым астероидом, названным в честь живого лица, стал (45) Евгения (открытый в 1857 году и названный в честь жены Наполеона III Евгении де Монтихо).

Первым мужчиной, в честь которого был назван астероид, стал Александр фон Гумбольдт: в его честь был назван астероид (54) Александра , открытый в 1858 году (видно, что имени астероида всё же придали женскую форму; кроме того, можно было считать, что название было дано в честь Александры, дочери мифологического царя Приама, но намерение первооткрывателя состояло в названии астероида именно в честь Гумбольдта).

Хотя имена домашних питомцев сейчас и считаются «запретными», прецеденты подобного рода всё же имеются. Так, астероиды (482) Петрина и (483) Сеппина названы в честь собак (Питер и Сепп) первооткрывателя М. Ф. Вульфа (оба астероида были открыты в 1902 году). Астероид, открытый в 1971 году, получил название (2309) Мистер Спок в честь кота первооткрывателя (кот, в свою очередь, получил свою кличку в честь персонажа телесериала «Звёздный путь»).

Среди названий астероидов можно встретить и такие необычные, как (4321) Зеро (назван в честь прозвища американского комедийного актёра Сэмюэла Джоэла «Зеро» Мостела), (6042) Чеширский кот (назван в честь персонажа «Алисы в Стране чудес»), (9007) Джеймс Бонд (тут сыграл на руку порядковый номер астероида), (13579) Всенечётные (в оригинале - Allodd , порядковый номер астроида состоит из нечётных чисел, идущих в возрастающем порядке), (24680) Всечётные (в оригинале - Alleven ).



Фотография астероида Гаспра (названного в честь крымского посёлка), который стал первым астероидом, исследованным космическим аппаратом («Галилео», 1991 год).

Названия астероидов нередко адаптируются в отдельных национальных языках. Так, самый первый открытый астероид (сейчас считающийся карликовой планетой) мы называем Церера, тогда как многие западные языки называют его Ceres, а греки - так и вообще Деметра (Δήμητρα). Юнону греки называют Герой, Весту - Гестией и т. п., согласно аналогиям между греческой и римской мифологией. В китайском языке классические названия астероидов заканчиваются иероглифом 星 (звезда, небесное тело), перед которым следует иероглиф 神 (божество) или 女 (женщина), а уже перед ним - иероглиф, описывающий наиболее характерное свойство этого божества. Так, например, Церера именуется на китайском 穀神星 (то есть, «планета божества зерновых»), Паллада - 智神星 (то есть, «планета божества мудрости») и т. п.

Было три парадоксальных случая, когда астероиды успевали получить собственное имя ещё до получения постоянного порядкового номера (то есть, до того, как их орбита была надёжно вычислена). Таковы (1862) Аполлон (открыт в 1932 году, но постоянный номер получил лишь в 1973), (2101) Адонис (открыт в 1936 году, но постоянный номер получил лишь в 1977) и (69230) Гермес (открыт в 1937 году, но постоянный номер получил лишь в 2003). В промежутке между датой открытия и датой присвоения постоянного номера эти астероиды считались «утерянными». «Утерянных», но позже «повторно найденных» астероидов насчитывается около двух десятков. Астероидов, наблюдавшихся лишь считанные дни и окончательно утерянных (ну, то есть, до сих пор не найденных), насчитывается порядка 1-2 десятков тысяч.

Несмотря на то, что номенклатура небесных тел - вещь как бы весьма серьёзная, в ней имеется множество примеров несуразиц, странностей и, казалось бы, неприемлемых совпадений. Например, многие астероиды и спутники больших планет имеют одинаковые имена: Европа (спутник Юпитера) и астероид (52) Европа , Пандора (спутник Сатурна) и астероид (55) Пандора и т. д. Иногда имена совпадают, но имеют разное происхождение: так, астероид (218) Бианка был назван в честь австрийской оперной певицы Бианки (настоящее имя - Берта Шварц), а спутник Урана Бианка был назван по имени персонажа из пьесы Шекспира «Укрощение строптивой». Нередко названия похожи и в некоторых языках даже «пересекаются»: например спутник Юпитера Каллисто в языках, использующих латиницу, обозначается как Callisto, тогда как астероид (204) Каллисто - уже как Kallisto.

Наконец, довольно часто астероиды имеют разные имена, но при этом эти имена отсылают к одному и тому же референту (часто речь идёт о ситуациях, когда для наименования использовались аналоги между греческими и римскими мифологическими персонажами). Так, кроме Луны (спутник Земли) имеется астероид (580) Селена (Селена - греческое название Луны), имя астероида (4341) Посейдон является греческим аналогом латинского названия планеты Нептун. Астероиды (433) Эрос , (763) Купидон и (1221) Амур отсылают к одному и тому же референту. Сравни также (2063) Бахус и (3671) Дионис . Или вот более забавные «пересечения»: (1125) Китай и (3789) Чжунго (Чжунго - название Китая на китайском языке), (14335) Алексосипов и (152217) Акосипов (оба названы в честь советского и украинского астронома Александра Осипова).

Отгадка на загадку
Для начала напомню вопрос: в каком именно полумесяце и каким по порядку было открыто небесное тело с временным обозначением 2003 VB 12 ?

Ответ: данный астероид стал 302-м астероидом, открытым за первую половину ноября 2003 года. Год открытия понятен. Первая буква V указывает на первую половину ноября (V - 22-я буква латинского алфавита, но буква I не используется в данной системе, 22 минус 1 даёт 21, то есть это первая половина одиннадцатого месяца). Цифровой индекс 12 показывает, что последовательность из двадцати пяти «вторых» букв (напоминаю - I не используется) повторилась 12 раз (то есть, умножаем 12 на 25 получаем 300). Далее смотрим на вторую букву в обозначении - B, вторая буква латинского алфавита. Прибавляем 2 к 300 - получаем 302. Речь идёт о временном обозначении, присвоенном телу, который сейчас более известен как транснептуновый объект Седна.



© dagexpo.ru, 2024
Стоматологический сайт