Алгебра высказываний. Логические операции. Определение значения истинности высказываний. Построение составных высказываний

21.09.2019

В двух предыдущих лекциях мы определили логические операции — отрицание, конъюнкцию, два вида дизъюнкции, импликацию и эквиваленцию. Рассмотрим некоторые задачи на применение определений логических связок. Это задачи, где требуется выяснить значение истинности одного составного высказывания, если известно значение истинности другого составного высказывания, а также задачи, где требуется определить, существуют ли простые высказывания, если известны истинностные значения некоторых составных высказываний, образованных из этих высказываний.

Определить значение истинности высказывания, используя значения истинности других высказываний

Задача 6.1. Известно, что высказывание $ \displaystyle AB$ ложно, а высказывание $ \displaystyle A \to B $ истинно. Определить значение истинности высказывания $ \displaystyle B \to A’ $, если известно, что его можно однозначно определить, используя эти данные.

Решение. Предположим, что это высказывание ложно:

$ \displaystyle B \to A’=0 $.

Почему мы предположили ложность, а не истинность данной импликации? Причина очень проста: импликация ложна только в одном случае. Если это предположение не будет противоречить условию задачи, то оно верно, так как значение истинности всякого высказывания — это ложь или истина. Согласно определению импликации, она ложна тогда и только тогда, когда посылка истинна, а заключение ложно:

$ \displaystyle B= 1$, $ \displaystyle A’=0 $.

В силу определения отрицания, оно ложно тогда и только тогда, когда само высказывание истинно:

$ \displaystyle A=1 $.

Но в этом случае, учитывая определения импликации и конъюнкции,

$ \displaystyle A \to B=1 $, $ \displaystyle A B=1 $.

Однако по условию задачи последнее высказывание имеет значение истинности «ложь». Получили противоречие. Значит, высказывание $ \displaystyle B \to A’ $ истинно.

Задачу можно решить и другим способом: используя условие, напрямую получить значение истинности импликации. Так как

$ \displaystyle AB=0 $,

то, согласно определению конъюнкции, возможны следующие варианты распределения истинностных значений высказываний $ \displaystyle A $ и $ \displaystyle B $:

1) $ \displaystyle A=B=0 $;

3) $ \displaystyle A=1 $, $ \displaystyle B=0 $.

Поскольку

$ \displaystyle A \to B=1 $,

то, согласно определению импликации, получаем, что значения истинности высказываний $ \displaystyle A $ и $ \displaystyle B $ могут быть такими:

1) $ \displaystyle A=B=0 $;

2) $ \displaystyle A=0 $, $ \displaystyle B=1 $;

3) $ \displaystyle A=B=1 $.

Условия $ \displaystyle A=1 $, $ \displaystyle B=0 $ и $ \displaystyle A=B=1 $ несовместимы, так как любое высказывание либо истинно, либо ложно. Остаются первые два варианта. Проверим их, используя определения импликации и отрицания:

1) $ \displaystyle B \to A’=0 \to 0’=0 \to 1=1 $;

2) $ \displaystyle B \to A’=1 \to 0’=1 \to 1 =1 $.

В обоих случаях высказывание $ \displaystyle B \to A’ $ имеет значение истинности «истина».

Очевидно, что первый способ решения настоящей задачи гораздо короче, чем второй.

Выяснить, достаточно ли данных, чтобы определить значение истинности высказывания

Задача 6.2. Пусть высказывание $ \displaystyle A \to B $ ложно. Достаточно ли этого, чтобы определить значение истинности высказывания $ \displaystyle (B \to (A \to C)) \vee (B’ \to C) $? Если достаточно, то указать это значение. Если не достаточно, то показать на примерах, что возможны оба истинностных значения.

Решение. Поскольку

$ \displaystyle A \to B=0 $,

то, согласно определению импликации,

$ \displaystyle A=1$, $ \displaystyle B=0 $.

Значит, импликация $ \displaystyle B \to (A \to C) $ истинна, так как её посылка ложна (какими бы ни были значения истинности высказываний $ \displaystyle A $ и $ \displaystyle C $). Следовательно, учитывая определение дизъюнкции, высказывание $ \displaystyle (B \to (A \to C)) \vee (B’ \to C) $ имеет значение истинности «истина».

Задача 6.3. Пусть известно, что высказывание $ \displaystyle AB $ истинно. Возможно ли, используя эти данные, определить значение истинности высказывания $ \displaystyle (AB) \to ((ABC’) \vee (A’BC))$ ? Если возможно, то указать это значение. В противном случае показать на примерах, что высказывание может быть как истинным, так и ложным.

Решение. Поскольку конъюнкция двух высказываний истинна тогда и только тогда, когда оба этих высказывания истинны, то

$ \displaystyle A=B=1 $.

Значит, импликация $ \displaystyle (AB) \to ((ABC’) \vee (A’BC))$ истинна, если её заключение истинно, и ложна в противном случае (в силу определения данной логической связки). Рассмотрим дизъюнкцию $ \displaystyle (ABC’) \vee (A’BC) $. Известно, что

$ \displaystyle A=B=1 $.

Тогда, согласно определению отрицания $ \displaystyle A’=0 $. Если $ \displaystyle C=0 $, то $ \displaystyle C’=1 $. Следовательно, согласно определению, конъюнкция $ \displaystyle ABC’ $ истинна, а конъюнкция $ \displaystyle A’BC $ ложна. Значит, дизъюнкция $ \displaystyle (ABC’) \vee (A’BC) $ истинна. Если $ \displaystyle C=1 $, то $ \displaystyle C’=0 $. Следовательно, высказывания $ \displaystyle ABC’ $ и $ \displaystyle A’BC $ ложны. Тогда и дизъюнкция $ \displaystyle (ABC’) \vee (A’BC) $ ложна. Итак, высказывание $ \displaystyle (AB) \to ((ABC’) \vee (A’BC))$ имеет значение истинности «ложь» при

$ \displaystyle C=1 $

и «истина» при

$ \displaystyle C=0 $.

Получается, что нельзя однозначно определить значение истинности высказывания, используя условия задачи. Здесь нужно подчеркнуть, что это не означает, что значение истинности вообще нельзя определить. Просто здесь не хватает данных для этого.

Выяснить, существуют ли высказывания с данными значениями истинности

Задача 6.4. Пусть высказывание $ \displaystyle A \vee B’ $ и $ \displaystyle B \to (A \vee C) $ имеет значение истинности «ложь», а высказывание $ \displaystyle C’ \to B’ $ имеет значение истинности «истина». Существуют ли такие высказывания $ \displaystyle A $, $ \displaystyle B$ и $ \displaystyle C $?

Решение. Дизъюнкция двух высказываний, в силу определения, ложна только в одном случае: если ложны оба этих высказывания. Значит,

$ \displaystyle A=B’=0 $.

Следовательно, учитывая определения отрицания,

$ \displaystyle B=1 $.

Рассмотрим импликацию

$ \displaystyle B \to (A \vee C) $.

По условию задачи она ложна. Это возможно тогда и только тогда, когда

$ \displaystyle B=1 $, $ \displaystyle A \vee C =0 $.

Значит, в силу определения дизъюнкции,

$ \displaystyle A=C=0 $.

Следовательно,

$ \displaystyle C’ \to B’=0′ \to 1’=1 \to 0=0 $.

Но, согласно условию задачи, данная импликация истинна. Получили противоречие. Это означает, что не существует высказываний, удовлетворяющим таким условиям.

Урок №2

Алгебра высказываний. Логические операции.

(урок комбинированный, включающий повторение предыдущей темы,

введение нового материала и закрепление)

Цель урока: Сформировать у учащихся понятия: логическое высказывание, логические операции.

Задачи урока :

Повторить основные материалы 1 урока (формы человеческого мышления: понятие, суждение, умозаключение);

Познакомить с определением алгебры высказываний;

Познакомить с основными логическими операциями.

Требования к знаниям и умениям:

Учащиеся должны знать:

Что изучает алгебра высказываний и что является объектом изучения алгебры высказываний;

Значения понятий: логическое высказывание, логические операции;

Таблицы истинности логических операций.

Учащиеся должны уметь:

Приводить примеры логических высказываний;

Определять значения логических высказываний;

Называть логические операции и строить для них таблицы истинности.

Этапы урока

I. Организационный момент. Постановка цели урока. 2 мин.

II. Повторение. 7мин.

III. Проверка домашнего задания. 5 мин.

IV. Введение нового материала. 20 мин.

V. Закрепление. 7 мин.

VI. Подведение итогов урока. 3 мин.

VII. Постановка домашнего задания. 1 мин.

Ход урока

II. Повторение .

1) Повторение основных определений и понятий 1 урока:

· Понятие – форма мышления, в которой отражены существенные признаки объектов.

o Объём понятия – множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия.

Привести примеры .

· Суждение (высказывание, утверждение) - форма мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях между ними.

o Форма суждения – это его строение, способ связи его составных частей.

· Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам вывода получаем суждение-заключение (вывод умозаключения)

- Определите, какие из перечисленных фраз являются высказываниями и почему?

1. Как хорошо быть генералом!

2.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6.

7.

(Примеры 1 и 3 не являются высказываниями, т. к. являются восклицательным и побудительным предложениями соответственно).

- Теперь определите, простые или составные суждения даны .

(В 5 примере можно разбить на два простых утверждения, значит, оно составное.)

- Определите значения высказываний (истина или ложь).

На 6 примере убеждаемся, что содержание высказывания часто субъективная характеристика. Обоснование истинности или ложности простых высказываний решается вне науки логики. Например, опираясь на свой жизненный опыт, мы присваиваем определённое значение суждению 6.

Русские пословицы как в примере 4 будут всегда истинны, т. к. опираются на жизненный опыт целых поколений людей.

В примере 7 значение высказывания решается в курсе геометрии, а в 5 утверждении в курсе истории.

Результаты оформляются в виде следующей таблицы:

Фразы

Высказывания

Истина или ложь

Простые высказывания

1. Как хорошо быть генералом!

2. Без труда не выловишь и рыбку из пруда.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6. Талант всегда пробьёт себе дорогу.

7. Сумма углов треугольника равна 1800.

На прошлом уроке мы говорили, что каждое высказывание состоит из трех элементов:
субъекта, предиката и связки . Субъект (S) - понятие о предмете. Предикат (P) - понятие о свойствах и отношениях предмета. Связка - отношение между субъектом и предикатом.

Определите, что в простых высказываниях является субъектом, предикатом и связкой.

Без труда не выловишь и рыбку из пруда.

Все медведи живут на севере.

Талант всегда пробьёт себе дорогу.

Сумма углов треугольника равна 1800.

III. Проверка домашнего задания:

Карточка для домашней работы

1.Из приведенных простых высказываний составьте и запишите не менее 3-ёх составных высказываний:

1) Поедем на дачу.

2) Хорошая погода.

3) Плохая погода.

4) Мы поедем на пляж.

5) Антон приглашает нас в театр .

2. Выведите, если это возможно, заключение из каждой пары посылок:

А) Все птицы – животные.

Все воробьи – птицы.

Б) Некоторые уроки трудны.

Всё, что трудно, требует внимания.

В) Ни один добрый поступок не является незаконным.

Всё, что законно, можно делать без страха.

А) Тем, кто лыс, расчёска не нужна.

Ни одна ящерица не имеет волос.

Следовательно, ящерицам расчёска не нужна.

Б) Всем, кто отлично закончит 3 четверть, подарят компьютер.

Ты закончил 3 четверть без троек.

Значит, готовься получить в подарок компьютер.

VI. Объяснение нового материала

Алгебра высказываний

Идею о возможности математизации логики высказал еще в XVII веке. Он пытался создать универсальный язык, с помощью которого каждому понятию и высказыванию можно было бы дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы сразу определить, истинно данное высказывание или ложно. То есть споры между людьми можно было бы разрешать посредством вычислений. Идея Лейбница оказалось ложной, так как невозможно (не найдены способы) свести человеческое мышление к некоторому математическому исчислению.

Однако, подлинный прогресс этой науки был достигнут в середине XIX века прежде всего благодаря трудам Дж. Буля "Математический анализ логики". Он перенес на логику законы и правила алгебраических действий, ввёл логические операции, предложил способ записи высказываний в символической форме.

В развитии математической логики приняли участие многие выдающиеся математики и логики конца XIX и XX веков, в том числе К. Гедель (австр.), Д. Гильберт (нем.), С. Клини (амер.), Э. Пост (амер.), А. Тьюринг (анг.), А. Чёрч (амер.), и многие другие.

Современная математизированная формальная логика представляет собой обширную научную область, которая находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (синтез и анализ автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Таким образом, объектами изучения алгебры логики являются высказывания.

Под высказыванием (суждением) будем понимать повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Обозначать высказывания будем большими латинскими буквами. Если высказывание А истинное, то будем писать "А = 1" и говорить: "А - истинно". Если высказывание Х ложно, то будем писать "Х = 0" и говорить "Х ложно".

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равно 180о» устанавливается геометрией, причём в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского – ложным.

Алгебра логики отвлекается от смыслового содержания высказываний. Её интересует только один факт – истинно или ложно данное высказывание. Такое суждение интересов даёт возможность изучать высказывания алгебраическими методами.

Логические операции

В алгебре логики над высказываниями можно производить различные операции (как и в алгебре действительных чисел определены операции сложения, деления, возведения в степень над числами). Мы рассмотрим только некоторые, наиболее важные из них:

    Дизъюнкция (логическое сложение) Импликация (логическое следование) Эквивалентность (логическое равенство)

1) Инверсия (логическое отрицание)

Инверсия (логическое отрицание) – это логическая операция, которая каждому данному высказыванию ставит в соответствие новое высказывание, которое истинно, если данное высказывание – ложно, и ложно, если данное высказывание истинно.

Логические операции задаются таблицами истинности и могут быть графически проиллюстрированы с помощью кругов Эйлера , названных в честь великого математика, физика и астронома Леонарда Эйлера ()

Обозначение инверсии: ; неА ; А; NOT А

0 " style="border-collapse:collapse;border:none">

А

Образуется из простого высказывания с помощью добавления частицы НЕ к сказуемому или использованием оборота речи "НЕВЕРНО, ЧТО...".

Пример: А = "На улице дождь"

= "Неверно, что на улице дождь"

Задание 1. Приведите пример высказывания и его отрицания.

Определите истинность каждого.

Итак, инверсия высказывания истинна, когда высказывание ложно.

2) Конъюнкция (логическое умножение)

истинно тогда и только тогда, когда оба исходных высказывания истинны.

Обозначение конъюнкции: А &В , А andВ , А LВ , А В .

Таблица истинности:

А &В

Образуется соединением двух высказываний в одно с помощью союза «И»

Пример: А = "На улице дождь"

В= "Небо голубое"

А &В = "На улице дождь и небо голубое"

Задание 2. а) Приведите примеры двух высказываний и получите составное высказывание используя логическую связку "И".

Итак, конъюнкция двух высказываний истинна тогда и только тогда, когда оба исходных высказывания истинны.

3) Дизъюнкция (логическое сложение) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

Обозначение дизъюнкции: А V В , А OR В , А +В .

0 " style="border-collapse:collapse;border:none">

А V В

Образуется соединением двух высказываний в одно с помощью союза «ИЛИ»

Пример: А = "На улице дождь"

В= "Небо голубое"

А V В = "На улице дождь или небо голубое"

Задание 3. а) Приведите примеры двух высказываний и получите составное высказывание используя связку "ИЛИ".

Итак, дизъюнкция двух высказываний истинна тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

4) Импликация (логическое следование) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

ложно тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

Обозначение дизъюнкции: А ® В .

Таблица истинности: Диаграмма Эйлера:

«ЕСЛИ …, ТО …»

Если клятва дана, то она должна выполняться.

Если число делится на 9, то оно делится и на 3.

Пример: А = " На улице дождь"

В= "Небо голубое"

А ® В = "Если на улице дождь, то небо голубое"

Задание 4 . а) Приведите примеры двух высказываний и получите составное высказывание, используя связку "ЕСЛИ, ТО...".

б) Определите истинность или ложность каждого из трех высказываний

Итак, импликация двух высказываний ложна тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

5) Эквивалентность (логическое равенство) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

Обозначение дизъюнкции: А « В, А = В, А≡В .

Таблица истинности: Диаграмма Эйлера:


Образуется соединением двух высказываний в одно с помощью оборота речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

Угол называется прямым тогда и только тогда, когда он равен 900

Все законы математики, физики, все определения – эквивалентность высказываний

Две прямые параллельны тогда и только тогда, когда они не пересекаются.

Пример: А = "На улице дождь"

В= "Небо голубое"

А « В = "На улице дождь тогда и только тогда, когда небо голубое"

Задание 5. а) Приведите примеры двух высказываний и получите составное высказывание используя связку речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

б) Определите истинность или ложность каждого из трех высказываний.

Итак, эквивалентность двух высказываний истинна тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

VI. Закрепление изученного.

1. Объясните, почему следующие предложения не являются высказываниями :

· Какого цвета этот дом?

· Число Х не превосходит единицы.

· Посмотрите в окно.

· Пейте томатный сок!

· Эта тема скучна.

· Вы были в театре?

2. Объясните, почему формулировка любой теоремы является высказыванием.

3. Приведите по 2 примера истинных и ложных высказываний из математики, биологии, истории, информатики, литературы.

4. Из следующих предложений выбрать те, которые являются высказываниями:

    Коля спросил: «Как пройти к Большому театру?» Как пройти в библиотеку? Картины Пикассо слишком абстрактны. Решение задачи – информационный процесс. Число 2 является делителем числа 7 в некоторой системе счисления.

5. Выбрать истинные высказывания:

· “Число 28 является совершенным числом”

· “Без труда не выловишь и рыбку из пруда”

· “Талант всегда пробьёт себе дорогу”

· “Некоторые животные мыслят”

· “Информатика - наука об алгоритмах”

· “2+3*5=30”

· “Все ученики любят информатику”

6.

7. Какая логическая операция соответствует данной таблице истинности?

8. Какая логическая операция соответствует данной таблице истинности?

9. Какая логическая операция соответствует данной таблице истинности?

10. Какая логическая операция соответствует данной таблице истинности?

Итог урока:

    Вы познакомились с основными понятиями алгебры логики. Рассмотрели логические операции. Разобрали для каждой логической операции таблицу истинности и проиллюстрировали ЛО с помощью кругов Эйлера.

2. Выучить все определения в тетради из конспекта урока .

3. Подобрать высказывания для каждой логической операциипримера)

Логика, созданная как наука Аристотелем (384-322 г. до н.э.), на протяжении столетий использовалась для развития многих областей знания, включая теологию, философию, математику.

Она - тот фундамент, на котором построено все здание математики. По сути, логика — это наука о рассуждениях, которая позволяет определить истинность или ложность того или иного математического утверждения, исходя из совокупности первичных предположений, называемых аксиомами. Логика применяется также в информатике для построения компьютерных программ и доказательства их корректности. Понятия, методы и средства логики лежат в основе современных информационных технологий. Одна из основных целей этой работы — изложить основы математической логики, показать, как она используется в информатике, и разработать методы анализа и доказательства математических утверждений.

Логические представления - описание исследуемой сис-темы, процесса, явления в виде совокупности сложных высказываний, составленных из простых (элементарных) высказываний и логических связок между ними. Логические представления и их составляющие характеризуются опре-деленными свойствами и набором допустимых преобразо-ваний над ними (операций, правил вывода и т.п.), реализую-щих разработанные в формальной (математической) логике правильные методы рассуждений — законы логики .

Понятие высказывания

Высказывание — это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно или ложно. Иными словами, утверждение об истинности или ложности высказывания должно иметь смысл. Истинность или ложность, приписываемые некоторому утверждению, называются его значением истинности , или истинностным значением.

Например, высказывания Дважды два четыре и Город Челябинск находится в азиатской части России истинные, а высказывания Три больше пяти и Река Дон в настоящее время впадает в Каспийское море ложны, так как не соответствуют действительности. Истинные высказывания принято обозначать T (true ) или И (истина ), а ложные, соответственно, F (false ) или Л (ложь ). В информатике истинность принято обозначать 1 (двоичная единица), а ложность - 0 (двоичный ноль).

Вот примеры предложений, не являющихся высказываниями:

Кто вы? (вопрос),

Прочтите эту главу до следующего занятия (приказ или восклицание),

Это утверждение ложно (внутренне противоречивое утверждение),

Площадь отрезка меньше длины куба (нельзя сказать истинно это предложение или ложно, т.к. не имеет смысла).

Мы будем обозначать высказывания буквами латинского алфавита р , q , r , Например, р может обозначать утверждение Завтра будет дождь , а q — утверждение Квадрат целого числа есть число положительное .


Логические связки

В обыденной речи для образования сложного предложения из простых используются связки — особые части речи, соединяющие отдельные предложения. Наиболее часто употребляются связки и , или , не , если ... то , только если , и тогда и только тогда . В отличие от обыденной речи, в логике смысл таких связок должен быть определен однозначно. Истинность сложного высказывания однозначно определяется истинностью или ложностью составляющих его частей. Высказывание, не содержащее связок, называется простым . Высказывание, содержащее связки, называется сложным . Логические связки также называют логическими операциями над высказываниями.

Пусть р и q обозначают высказывания

р: Джейн водит автомобиль,

q: У Боба русые волосы.

Сложное высказывание

Джейн водит автомобиль и у Боба русые волосы состоит из двух частей, объединенных связкой и . Это высказывание может быть символически записано в виде

где символ обозначает слово и на языке символических выражений. Выражение называется конъюнкцией высказываний р и q .

Встречаются также следующие варианты записи конъюнкции:

Точно так же высказывание

Джейн водит автомобиль или у Боба русые волосы.

символически выражается как

где обозначает слово или в переводе на символический язык. Выражение называется дизъюнкцией высказываний р и q .

Опровержение, или отрицание высказывания p обозначается через

Таким образом, если р есть высказывание Джейн водит автомобиль , то - это утверждение Джейн не водит автомобиль .

Если r есть высказывание Джо нравится информатика , то Джейн не водит автомобиль и у Боба русые волосы или Джо любит информатику символически запишется как

.

И наоборот, выражение

это символическая форма записи высказывания Джейн водит автомобиль, у Боба волосы не русые и Джо нравится информатика .

Рассмотрим выражение . Если некто говорит: "Джейн водит автомобиль и у Боба русые волосы" , то мы, естественно, представляем себе Джейн за рулем автомобиля и русоволосого Боба. В любой другой ситуации (например, если Боб не русоволос или Джейн не водит автомобиль) мы скажем, что говорящий не прав.

Возможны четыре случая, которые нам необходимо рассмотреть. Высказывание р может быть истинным (Т ) или ложным (F ) и независимо от того, какое истинностное значение принимает р , высказывание q может также быть истинным (Т ) или ложным (F ). Таблица истинности перечисляет все возможные комбинации истинности и ложности сложных высказываний.

Итак, конъюнкция истинна тогда и только тогда, когда истинны оба высказывания p и q , то есть в случае 1.

Точно так же рассмотрим высказывание Джейн водит автомобиль или у Боба русые волосы , которое символически выражается как . Если некто скажет: "Джейн водит автомобиль или у Боба русые волосы", то он будет не прав только тогда, когда Джейн не сможет управлять автомобилем, а Боб не будет русоволосым. Для того чтобы все высказывание было истинным, достаточно, чтобы одна из двух составляющих его компонент была истинной. Поэтому имеет таблицу истинности

Дизъюнкция ложна только в случае 4, когда оба р и q ложны.

Таблица истинности для отрицания имеет вид

Истинностное значение всегда противоположно истинностному значению р. В таблицах истинности отрицание всегда оценивается первым, если только за знаком отрицания не следует высказывание, заключенное в скобки. Поэтому интерпретируется как , так что отрицание применяется только к р . Если мы хотим отрицать все высказывание, то это записывается как .

Символы и называют бинарными связками, так как они связывают два высказывания. Символ ~ является унарной связкой, так как применяется только к одному высказыванию.

Еще одна бинарная связка - это исключающее или, которое обозначается через . Высказывание истинно, когда истинно p или q , но не оба одновременно. Эта связка имеет таблицу истинности

Используя слово или , мы можем иметь в виду исключающее или . Например, когда мы говорим, что р — либо истина, либо ложь, то, естественно, предполагаем, что это не выполняется одновременно. В логике исключающее или используется довольно редко, и в дальнейшем мы, как правило, будем обходиться без него.

Рассмотрим высказывание

,

где скобки использованы, чтобы показать, какие именно высказывания являются компонентами каждой связки.

Таблица истинности дает возможность однозначно указать те ситуации, когда высказывание является истинным; при этом мы должны быть уверены, что учтены все случаи. Поскольку сложное высказывание содержит три основных высказывания р , q и r , то возможны восемь случаев

Случай p q r
T T T F F T
T T F F F T
T F T T T T
T F F T F T
F T T F F F
F T F F F F
F F T T T T
F F F T F F

При нахождении значений истинности для столбца мы используем столбцы для и r , а также таблицу истинности для . Таблица истинности для показывает, что высказывание истинно лишь в том случае, когда истинны оба высказывания и r . Это имеет место лишь в случаях 3 и 7.

Заметим, что при определении значений истинности для столбца играет роль только истинность высказываний p и . Таблица истинности для показывает, что единственный случай, когда высказывание, образованное с помощью связки или , ложно, — это случай, когда ложны обе части этого высказывания. Такая ситуация имеет место только в случаях 5, 6 и 8.

Другой, эквивалентный способ построения таблицы истинности состоит в том, чтобы записывать истинностные значения выражения под связкой. Снова рассмотрим выражение. Сначала мы записываем истинностные значения под переменными р , q и r . Единицы под столбцами истинностных значений указывают на то, что этим столбцам истинностные значения присваиваются в первую очередь. В общем случае число под столбцом будет показывать номер шага, на котором производятся вычисления соответствующих истинностных значений. Затем мы записываем под символом ~ истинностные значения высказывания . Далее записываем истинностные значения под символом . Наконец, записываем значения высказывания под символом .

Случай p q r p ((~ q ) r
T T T T T F T F T
T T F T T F T F F
T F T T T T F T T
T F F T T F F F F
F T T F F F T F T
F T F F F F T F F
F F T F T T F T T
F F F F F F F F F

1.1.3. Условные высказывания

Допустим, некто утверждает, что если случится одно событие, то случится и другое. Предположим, отец говорит сыну: "Если в этом семестре ты сдашь все экзамены на «отлично», я куплю тебе машину ". Заметьте, что высказывание имеет вид: если р, то q , где р — высказывание В этом семестре ты сдашь все экзамены на «отлично» , а q — высказывание Я куплю тебе машину . Сложное высказывание мы обозначим символически через . Спрашивается, при каких условиях отец говорит правду? Предположим, высказывания р и q истинны. В этом случае счастливый студент получает отличные оценки по всем предметам, и приятно удивленный отец покупает ему машину. Естественно, ни у кого не вызывает сомнения тот факт, что высказывание отца было истинным. Однако существуют еще три других случая, которые необходимо рассмотреть. Допустим, студент действительно добился отличных результатов, а отец не купил ему машину.

Самое мягкое, что можно сказать об отце в таком случае, — это то, что он солгал. Следовательно, если р истинно, а q ложно, то ложно. Допустим теперь, что студент не получил положительные оценки, но отец тем не менее купил ему машину. В этом случае отец предстает очень щедрым, но его никак нельзя назвать лжецом. Следовательно, если р ложно и q истинно, то высказывание если р, то q (т.е. ) истинно. Наконец, предположим, что студент не добился отличных результатов, и отец не купил ему машину.

Поскольку студент не выполнил свою часть соглашения, отец тоже свободен от обязательств. Таким образом, если р и q ложны, то считается истинным. Итак, единственный случай, когда отец солгал, — это когда он дал обещание и не выполнил его.

Таким образом, таблица истинности для высказывания имеет вид

Символ называется импликацией , или условной связкой .

Может показаться, что носит характер причинно-следственной связи, но это не является необходимым. Чтобы увидеть отсутствие причины и следствия в импликации, вернемся к примеру, в котором р есть высказывание Джейн управляет автомобилем , а q — утверждение У Боба русые волосы . Тогда высказывание Если Джейн управляет автомобилем, то у Боба русые волосы запишется как

если p , то q или как .

То, что Джейн управляет автомобилем, никак причинно не связано с тем, что Боб русоволосый. Однако нужно помнить, что истинность или ложность бинарного сложного высказывания зависит только от истинности составляющих его частей и не зависит от наличия или отсутствия между ними какой-либо связи.

Рассмотрим следующий пример. Требуется найти таблицу истинности для выражения

.

Используя таблицу истинности для , приведенную выше, построим сначала таблицы истинности для и , учитывая, что импликация ложна только в случае, когда .

Теперь используем таблицу для , чтобы получить для высказывания

таблицу истинности

Случай p q r (p q ) (q r )
T T T T T T T T T T
T T F T T T F T F F
T F T T F F F F T T
T F F T F F F F T F
F T T F T T T T T T
F T F F T T F T T F
F F T F T F T F F T
F F F F T F T F T F
*

Высказывание вида обозначается через . Символ называется эквиваленцией . Эквиваленция также иногда обозначается как (не следует путать с унарной операцией отрицания).

Тема программы: Высказывания и операции над ними.

Цели урока:

1) Обобщить теоретические знания по теме: «Высказывания и операции над ними».

2) Рассмотреть алгоритмы решений заданий теме «Высказывания и операции над ними», решить задачи.

3) Формировать умение прогнозировать собственную деятельность, умение организовать свою деятельность и анализировать ее.

Время выполнения: 1 час.

Теоретические основы

Основным понятием математической логики является понятие «простого высказывания». Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь».

Примеры высказываний.
1) Москва стоит на Неве.
2) Лондон - столица Англии.
3) Сокол не рыба.
4) Число 6 делится на 2 и на 3.
Высказывания 2), 3), 4) истинны, а высказывание 1) ложно.
Очевидно, предложение «Да здравствует Россия!» не является высказыванием.
Различают два вида высказываний.
Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2).
Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если.... то...», «тогда и только тогда», принято называть сложными или составными.
Так, высказывание 3) получается из простого высказывания «Сокол - рыба» с помощью отрицания «не», высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на З», соединенных союзом «и».
Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда».
В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.
Элементарные высказывания обозначаются малыми буквами латинского алфавита: х, у, z, ..., а, b, с, ...; истинное значение высказывания цифрой 1, а ложное значение - буквой цифрой 0.
Если высказывание а истинно, то будем писать а = 1 , а если а ложно, то а = 0 .

Логические операции над высказываниями

Отрицание.

Отрицанием высказывания х называется новое высказывание , которое является истинным, если высказывание х ложно, и ложным, если высказывание х истинно.

Отрицание высказывания х обозначается и читается «не х» или «неверно, что х» .

Логические значения высказывания можно описать с помощью таблицы.

Таблицы такого вида принято называть таблицами истинности.
Пусть х высказывание. Так как также является высказыванием, то можно образовать отрицание высказывания , то есть высказывание , которое называется двойным отрицанием высказывания х . Ясно, что логические значения высказываний х и совпадают.

Например, для высказывания «Путин президент России» отрицанием будет высказывание «Путин не президент России», а двойным отрицанием будет высказывание «Неверно, что Путин не президент России».

Конъюнкция.

Конъюнкцией (логическим умножением) двух высказываний х и у называется новое высказывание, которое считается истинным, если оба высказывания х и у истинны, и ложным, если хотя бы одно из них ложно.
Конъюнкция высказываний х и у обозначается символом х&у ( , ху) , читается «х и у» . Высказывания х и у называются членами конъюнкции.
Логические значения конъюнкции описываются следующей таблицей истинности:

Например, для высказываний «6 делится на 2», «6 делится на 3» их конъюнкцией будет высказывание «6 делится на 2 и 6 делится на 3», которое, очевидно, истинно.

Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.

Дизъюнкция

Дизъюнкцией (логическим сложением) двух высказываний х и у называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний х, у истинно, и ложным, если они оба ложны. Дизъюнкция высказываний х, у обозначается символом «x V у» , читается «х или у» . Высказывания х, у называются членами дизъюнкции.
Логические значения дизъюнкции описываются следующей таблицей истинности:

В повседневной речи союз «или» употребляется в различном смысле: исключающем и не исключающем. В алгебре логики союз «или» всегда употребляется в не исключающем смысле.

Импликация.

Импликацией двух высказываний х и у называется новое высказывание, которое считается ложным, если х истинно, а у - ложно, и истинным во всех остальных случаях.
Импликация высказываний х, у обозначается символом , читается«если х, то у» или «из х следует у». Высказывание х называют условием или посылкой, высказывание у - следствием или заключением, высказывание следованием или импликацией.

Логические значения операции импликации описываются следующей таблицей истинности:

Употребление слов «если.... то...» в алгебре логики отличается от употребления их в обыденной речи, где мы, как правило, считаем, что, если высказывание х ложно, то высказывание «Если х, то у» вообще не имеет смысла. Кроме того, строя предложение вида «если х, то у» в обыденной речи, мы всегда подразумеваем, что предложение у вытекает из предложения х . Употребление слов «если..., то...» в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.
Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «Если х, то у». Если при этом известно, что х истинно и доказана истинность импликации , то мы вправе сделать вывод об истинности заключения у .

Эквивалентность.

Эквивалентностью двух высказываний х и у называется новое высказывание, которое считается истинным, когда оба высказывания х, у либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.

Эквивалентность высказываний х, у обозначается символом , читается«для того, чтобы х, необходимо и достаточно, чтобы у» или «х тогда и только тогда, когда у». Высказывания х, у называются членами эквивалентности.
Логические значения операции эквивалентности описываются следующей таблицей истинности:

Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в форме необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, мы зак­лючаем об истинности или ложности второго члена эквивалентности.

Практические задания

1. Установить логическую структуру следующих предложений и записать их на языке логики высказываний:

  • Если металл нагревается, он плавится.
  • Неправда, что философские споры неразрешимы.
  • Деньги - продукт стихийного развития товарных отношений, а не результат договоренности или какого-либо иного сознательного акта.

2. Записать логической формулой следующие высказывания:

а) если на улице дождь, то нужно взять с собой зонт или остаться дома;

Б) если - прямоугольный и стороны - равны, то

3. Проверить истинность высказывания:

а) , если, .

б) , если, .

в) , если, .

4. Проверить истинность высказывания:

а) Чтобы завтра пойти на занятия, я должен встать рано. Если я сегодня пойду в кино, то лягу спать поздно. Если я лягу спать поздно, то встану поздно. Следовательно, либо я не пойду в кино, либо не пойду на занятия.

б) Я пойду либо в кино, либо в бассейн. Если я пойду в кино, то получу эстетическое удовольствие. Если я пойду в бассейн, то получу физическое удовольствие. Следовательно, если я получу физическое удовольствие, то не получу эстетического удовольствия.

5 . На вопрос: «Кто из трех студентов изучал дискретную математику?» получен верный ответ: «Если изучал первый, то изучал и третий, но неверно, что если изучал второй, то изучал и третий». Кто изучал дискретную математику?

6. Определите, кто из четырех студентов сдал экзамен, если известно:

если первый сдал, то и второй сдал;

если второй сдал, то третий сдал или первый не сдал;

если четвертый не сдал, то первый сдал, а третий не сдал;

если четвертый сдал, то и первый сдал.

Контрольные вопросы

1. Какие элементы входят язык логики?

2. Какие способы установления общезначимости формулы логики вы знаете?

Список литературы

Практические занятия № 10-11

Тема программы: Формулы алгебры высказываний.

1.1 . Какие из следующих предложений являются высказываниями?

а) Москва  столица России.

б) Студент физико-математического факультета педагогического института.

в) Треугольник ABC подобен треугольнику А"В"С".

г) Луна есть спутник Марса.

е) Кислород  газ.

ж) Каша  вкусное блюдо.

з) Математика  интересный предмет.

и) Картины Пикассо слишком абстрактны.

к) Железо тяжелее свинца.

л) Да здравствуют музы!

м) Треугольник называется равносторонним, если его стороны равны.

н) Если в треугольнике все углы равны, то он равносторонние.

о) Сегодня плохая погода.

п) В романе А. С. Пушкина «Евгений Онегин» 136 245 букв.

р) Река Ангара впадает в озеро Байкал.

Решение . б) Это предложение не является высказыванием, потому что оно ничего не утверждает о студенте.

в) Предложение не является высказыванием: мы не можем определить, истинно оно или ложно, потому что не знаем, о каких именно треугольниках идет речь.

ж) Предложение не является высказыванием, так как понятие «вкусное блюдо» слишком неопределенно.

п) Предложение  высказывание, но для выяснения его значения истинности нужно затратить немало времени.

1.2. Укажите, какие из высказываний предыдущей задачи истинные, а какие  ложные.

1.3. Сформулируйте отрицания следующих высказываний; укажите значения истинности данных высказываний и их отрицаний:

а) Волга впадает в Каспийское море.

б) Число 28 не делится на число 7.

д) Все простые числа нечетны.

1.4. Установите, какие из высказываний в следующих парах являются отрицаниями друг друга и какие  нет (объясните почему):

а) 2 < 0, 2 > 0. -

б) 6 < 9, 6  9.

в) «Треугольник ABC прямоугольный», «Треугольник ABC тупоугольный».

г) «Натуральное число n четно», «Натуральное число n нечетно».

д) «Функция f нечетна», «Функция f четна».

е) «Все простые числа нечетны», «Все простые числа четны».

ж) «Все простые числа нечетны», «Существует простое четное число».

з) «Человеку известны все виды животных, обитающих на Земле», «На Земле существует вид животных, не известный человеку».

и) «Существуют иррациональные числа», «Все числа рациональные».

Решение. а) Высказывание «2 > 0» не является отрицанием "высказывания «2 < 0», потому что требование не быть меньше 0 оставляет две возможности: быть равным 0 и быть больше 0. Таким образом, отрицанием высказывания «2 < 0» является высказывание «2  0».

1.5. Следующие высказывания запишите без знака отрицания:

а)
; в)
;

б)
; г)
.

1.6.

а) Ленинград расположен на Неве и 2 + 3 = 5.

б) 7  простое число и 9  простое число.

в) 7  простое число или 9  простое число.

г) Число 2 четное или это число простое.

д) 2  3, 2  3, 2 2  4, 2 2  4.

е) 2 2 = 4 или белые медведи живут в Африке.

ж) 2 2 = 4, и 2 2  5, и 2 2  4.

Решение. а) Так как оба простых высказывания, к которым применяется операция конъюнкции, истинны, поэтому на основании определения этой операции и их конъюнкция есть истинное высказывание.

1.7. Определите значения истинности высказываний А, В, С, D и Е, если:

 истинные высказывания, а

 ложные.

Решение. в) Дизъюнкция высказываний есть истинное высказывание лишь в случае, когда по меньшей мере одно из входящих в дизъюнкцию составляющих высказываний (членов дизъюнкции) истинно. В нашем случае второе составляющее высказывание «2 2 = 5» ложно, а дизъюнкция двух высказываний истинна. Поэтому первое составляющее высказывание С истинно.

1.8. Сформулируйте и запишите в виде конъюнкции или дизъюнкции условие истинности каждого предложения (а и b - действительные числа):

а)
г)ж)

б)
д)
з)

в)
е)
и)

Решение. г) Дробь равна нулю лишь в случае, когда числитель равен нулю и знаменатель не равен нулю, т. е. (а = 0) & (b  0).

1.9. Определите значения истинности следующих высказываний:

а) Если 12 делится на 6, то 12 делится на 3.

б) Если 11 делится на 6, то 11 делится на 3.

в) Если 15 делится на 6, то 15 делится на 3.

г) Если 15 делится на 3, то 15 Делится на 6.

д) Если Саратов расположен на Неве, то белые медведи обитают в Африке.

е) 12 делится на 6 тогда и только тогда, когда 12 делится на 3.

ж) 11 делится на 6 тогда и только тогда, когда 11 делится на 3.

з) 15 делится на 6 тогда и только тогда, когда 15 делится на 3.

и) 15 делится на 5 тогда и только тогда, когда 15 делится на 4.

к) Тело массой m обладает потенциальной энергией mgh тогда и только тогда, когда оно находится на высоте h над поверхностью земли.

Решение. а) Так как высказывание-посылка «12 делится на 6» истинно и, высказывание-следствие «12 делится на 3» истинно, то и составное высказывание на основании определения импликации также истинно.

ж) Из определения эквивалентности видим, что высказывание вида
истинно, если логические значения высказыванийР и Q совпадают, и ложно в противном случае. В данном примере оба высказывания к которым применяется связка «тогда и только тогда», ложны. Поэтому все составное высказывание истинно.

1.10. Пусть через А обозначено высказывание «9 делится на 3», а через В  высказывание «8 делится на 3». Определите значения истинности следующих высказываний:

а)
г)
ж)
к)

б)
д)
з)
л)

в)
е)
и)
м)

Решение. е) Имеем
,
. Поэтому

1.11.

а) Если 4  четное число, то А.

б) Если В, то 4  нечетное число.

в) Если 4  четное число, то С.

г) Если D, то 4  нечетное число.

Решение. а) Импликация двух высказываний есть ложное высказывание лишь в единственном случае, когда посылка истинна, а заключение ложно. В данном случае посылка «4  четное число» истинна и по условию все высказывание также истинно. Поэтому заключение А ложным быть не может, т. е. высказывание А истинно.

1.12. Определите значения истинности высказываний А, В, С и D в следующих предложениях, из которых первые два истинны, а последние два ложны:

а)
; б)
;

в)
; г)
.

1.13. Пусть через А обозначено высказывание «Этот треугольник равнобедренный», а через В  высказывание «Этот треугольник равносторонний». Прочитайте следующие высказывания:

а)
г)

б)
д)

в)
е)

Решение. е) Если треугольник равнобедренный и неравносторонний, то неверно, что он неравнобедренный.

1.14. Следующие составные высказывания расчлените на простые и запишите символически, введя буквенные обозначения для простых их составляющих:

а) Если 18 делится на 2 и не делится на 3, то оно не делится на 6.

б) Произведение трех чисел равно нулю тогда и только тогда, когда одно из них равно нулю.

в) Если производная функция в точке равна нулю и вторая производная этой функции в той же точке отрицательна, то данная точка есть точка максимума этой функции.

г) Если в треугольнике медиана не является высотой и биссектрисой, то этот треугольник не равнобедренный и не равносторонний.

Решение. г) Выделим и следующим образом обозначим простейшие составляющие высказывания:

А: «В треугольнике медиана является высотой»;

В: «В треугольнике медиана является биссектрисой»;

С: «Этот треугольник равнобедренный»;

D: «Этот треугольник равносторонний».

Тогда данное высказывание символически записывается так:

1.15. Из двух данных высказываний А и В постройте составное высказывание с помощью операций отрицания, конъюнкции и дизъюнкции, которое было бы:

а) истинно тогда и только тогда, когда оба данных высказывания ложны;

б) ложно тогда и только тогда, когда оба данных высказывания истинны.

1.16. Из трех данных высказываний А, В, С постройте составное высказывание, которое истинно, когда истинно какое-либо одно из данных высказываний, и только в этом случае.

1.17. Пусть высказывание
истинно. Что можно сказать о логическом значении высказывания?

1.18. Если высказывание
истинно (ложно), то что можно сказать о логическом значении высказываний:

а)
; б)
; в)
; г)
?

1.19. Если высказывание
истинно, а высказывание
ложно, то что можно сказать о логическом значении высказывания
?

1.20. Существуют ли три таких высказывания А, В, С, чтобы одновременно высказывание
было истинным, высказывание
 ложным и высказывание
 ложным?

1.21. Для каждого из помещенных ниже высказываний определите, достаточно ли приведенных сведений, чтобы установить его логическое значение. Если достаточно, то укажите это значение. Если недостаточно, то покажите, что возможны и одно, и другое истинностные значения:

Решение. а) Поскольку заключение импликации истинно, то и вся импликация будет истинным высказыванием независимо от логического значения посылки.



© dagexpo.ru, 2024
Стоматологический сайт