Кварки и восьмеричный путь. Из чего все состоит Пользуясь названиями элементарных частиц из которых

17.03.2024

>> Атомы. Ионы. Химические элементы. Для любознательных. Химические элементы в живой природе

Атомы. Ионы. Химические элементы

Материал параграфа поможет вам:

> выяснить, какое строение имеет атом ;
> понять, в чем различие между атомом и ионом;
> усвоить названия и обозначения химических элементов - определенных видов атомов;
> использовать периодическую систему Д. И. Менделеева как источник сведений о химических элементах.

Атомы.

О веществах, их строении размышляли еще древнегреческие философы. Они утверждали, что вещества состоят из атомов - невидимых и неделимых частиц, а в результате их соединения образовался и существует окружающий мир.

1 Фильтром в домашних условиях может служить вата или бинт, сложенный в несколько раз. Фильтр необходимо поместить в хозяйственную лейку.

В переводе с греческого слово «атом» означает «неделимый».

Доказать существование атомов удалось лишь в XIX в. с помощью сложных физических экспериментов. Одновременно было установлено, что атом не является сплошной, монолитной частицей. Он состоит из ядра и электронов. В 1911 г. была предложена одна из первых моделей атома - планетарная. Согласно этой модели, ядро находится в центре атома и занимает незначительную часть его объема, а электроны движутся вокруг ядра по определенным орбитам, как планеты - вокруг Солнца (рис. 32).

Электрон в тысячи раз меньше атомного ядра. Это отрицательно заряженная частица. Ее заряд - наименьший из существующих в природе. Поэтому величину заряда электрона физики приняли за единицу измерения зарядов мельчайших частиц (кроме электронов, существуют и другие частицы). Таким образом, заряд электрона равен - 1 . Эту частицу обозначают так: .

Ядро атома заряжено положительно. Заряд ядра и суммарный заряд всех электронов атома одинаковы по величине, но противоположны по знаку. Поэтому атом электронейтралъный. Если заряд ядра атома составляет +1, то в таком атоме находится один электрон, если +2 - два электрона и т. д.


Рис. 32. Строение простейшего атома (планетарная модель)

Атом - мельчайшая электронейтральная частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженных электронов, которые движутся вокруг него.

Ионы.

Атом в определенных условиях может потерять либо присоединить один или несколько электронов. При этом он становится положительно или отрицательно заряженной частицей - ионом 1 .

Ион - заряженная частица, образовавшаяся в результате потери атомом или присоединения к нему одного или нескольких электронов.

1 Слово «ион» в переводе с греческого означает «идущий». В отличие от электронейтрального атома ион способен перемещаться в эл ектри ч еском поле.

Если атом теряет один электрон, то образуется ион с зарядом +1, а если присоединяет электрон, то заряд иона будет равен - I (схема 5). В случае потери атомом или присоединения к нему двух
электронов образуются ионы с зарядами соответственно +2 или -2 .


Схема 5. Образование ионов из атомов

Существуют также ионы, образовавшиеся из нескольких атомов.

Химические элементы.

Атомов во Вселенной - бесконечное множество. Их различают по зарядам ядер.

Вид атомов с определенным зарядом ядра называют химическим элементом.

Атомы с зарядом ядра +1 принадлежат одному химическому элементу, с зарядом +2 - другому элементу и т. д.

Сейчас известны 115 химических элементов. Заряды ядер их атомов составляют от +1 до +112, а также +114, +116 и +118.

Почти 90 элементов существуют в природе, а остальные (как правило, с наибольшими зарядами атомных ядер) - искусственные элементы. Их получают ученые на уникальном исследовательском оборудовании. Ядра атомов искусственных элементов неустойчивы и быстро распадаются.

Названия химических элементов, атомов и ионов.

У каждого химического элемента есть название. Современные названия элементов происходят от латинских названий (табл. I). Их всегда пишут с большой буквы.

Таблица I


До недавнего времени 18 элементов имели другие (традиционные) названия, которые можно найти в выпущенных ранее учебниках по химии, а также в таблице I. Например, традиционное название одного из таких элементов - водород, а современное - Гидроген.

Названия элементов используют и для соответствующих частиц: атом Гидрогена (водорода ), ион Гидрогена (водорода).

С названиями ионов, образовавшихся из нескольких атомов, вы ознакомитесь позже.

Названия химических элементов имеют разное происхождение. Одни связаны с названиями или свойствами (цветом, запахом) веществ, другие - с названиями планет, стран и т. п. Есть элементы, названные в честь выдающихся ученых. Происхождение некоторых названий неизвестно, поскольку они возникли очень давно.

Это интересно

Современное название одного из элементов - Меркурий. Оно отличается от латинского названия (Hydrargyrum), но близкое к английскому (Mercury) и французкому (Mercure).

Что вы думаете о происхождении названий таких элементов: Европий, Франций, Нептуний, Прометий, Менделевий?

Это интересно

Символы элементов во всех странах одни и те же.

Символы химических элементов.

Каждый элемент, кроме названия, имеет еще и сокращенное обозначение - символ, или знак. В наше время используют символы элементов, предложенные почти 200 лет назад известным шведским химиком Й. Я. Берцелиусом (1779-1848). Они состоят из одной латинской буквы (первой в латинских названиях элементов) или двух1. В таблице I такие буквы выделены в названиях элементов курсивом.


Рис. 33. Клетка периодической системы

Произношение символов почти всех элементов совпадает с их названиями. Например, символ элемента Иода I читается «йод», а не «и», а элемента Феррума Fe - «фэрум», а не «фэ». Все исключения собраны в таблице I.

В некоторых случаях используют общее обозначение химического элемента - E.

Символы и названия химических элементов содержатся в периодической системе Д. И. Менделеева.

Периодическая система химических элементов Д. И. Менделеева .

В 1869 г. русский химик Дмитрий Иванович Менделеев предложил таблицу, в которой разместил известные к тому времени 63 элемента. Эту таблицу назвали периодической системой химических элементов.
В нашем учебнике приведены два ее варианта: короткий (форзац I) и длинный (форзац II).

В периодической системе есть горизонтальные строки, которые называют периодами, и вертикальные столбцы - группы. Пересекаясь, они образуют клетки, в которых содержится важнейшая информация о химических элементах.

Каждая клетка пронумерована. В ней записан символ элемента, а под ним - название (рис. 33).

1 Символы четырех элементов, открытых в последнее время, состоят из трex букв.

Дмитрий Иванович Менделеев (1834- 1907)


Выдающийся ученый-химик, член и почетный член академий наук многих стран. В 1869 г., в возрасте 35 лет, создал периодическую таблицу (систему) химических элементов и открыл периодический закон - фундаментальный закон химии. Опираясь на периодический закон, изложил химию в своем учебнике «Основы химии», который многократно переиздавался в России и других странах. Провел основательные исследования растворов и разработал теорию их строения (1865- 1887). Вывел общее уравнение газового состояния (1874). Предложил теорию происхождения нефти, разработал технологию производства бездымного пороха, внес существенный вклад в развитие науки об измерениях - метрологии.

Номер клетки называют порядковым номером размещенного в ней элемента. Его общее обозначение - Z. Выражение «порядковый номер элемента Неона - 10» сокращенно записывают так: Z(Ne) = 10. Порядковый номер элемента совпадает с зарядом ядра его атома и количеством электронов в нем.

В периодической системе все элементы размещены в порядке возрастания заряда ядер атомов.

Итак, из периодической системы Д. И. Менделеева можно получить такие сведения о химическом элементе:

Символ;
название;
порядковый номер;
заряд ядра атома;
количество электронов в атоме;
номер периода, в котором элемент находится;
номер группы, в которой он размещен.

Найдите в периодической системе элемент с порядковым номером 5 и выпишите в тетрадь сведения о нем.

Распространенность химических элементов.

Одни элементы встречаются в природе «на каждой шагу», другие - чрезвычайно редко. Распростриненность элемента в воздухе, воде, почве и т. п. оценивают, сравнивая количество его атомов с количеством атомов других элементов.

Владимир Иванович Вернадский (1863- 1945)

Российский и украинский ученый-естествоиспытатель, академик АН СССР и АН УССР, первый президент АН Украины (1919). Один из основоположников геохимии. Выдвинул теорию происхождения минералов. Изучал роль живых организмов в геохимических процессах. Разработал учение о биосфере и ноосфере. Исследовал химический состав литосферы, гидросферы, атмосферы. Организатор нескольких научно-исследовательских центров. Основатель школы ученых-геохимиков.

Распределение элементов в разных частях нашей планеты изучает наука геохимия. Значительный вклад в ее развитие внес выдающийся отечественный ученый В. И. Вернадский.

Атмосфера почти полностью состоит из двух газов - азота и кислорода. Молекул азота в воздухе вчетверо больше, чем молекул кислорода . Поэтому первое место по распространенности в атмосфере занимает элемент Нитроген, а второе - Оксиген.

Гидросфера - это реки, озера, моря, океаны, в которых растворены небольшие количества твердых веществ и газов . Приняв во внимание состав молекулы воды , легко приити к заключению, что в гидросфере больше всего атомов Гидрогена.

Литосфера, или земная кора, - это твердый поверхностный слой Земли. В нем содержится много элементов. Наиболее распространенными являются Оксиген (58 % всех атомов), Силиций (19,6 %) и Алюминий (6,4 %).

Во Вселенной существуют те же элементы, что и на нашей планете. Первое и второе места по распространенности в ней занимают Гидроген (92 % всех атомов) и Гелий (7 %) - элементы, атомы которых имеют простейшее строение.

Выводы

Атом - мельчайшая электронейтральная частица вещества, которая состоит из положительно заряженного ядра и отрицательно заряженных электронов.

Ион - положительно или отрицательно заряженная частица, образовавшаяся вследствие потери атомом или присоединения к нему одного или нескольких электронов.

Вид атомов с определенным зарядом ядра называют химическим элементом. Каждый элемент имеет название и символ.

Важнейшие сведения о химических элементах содержатся в периодической системе, созданной русским ученым Д. И. Менделеевым.

Почти 90 химических элементов существуют в природе; они различаются по распространенности.

?
37. Охарактеризуйте строение атома.
38. Дайте определение иона. Как эта частица образуется из атома?
39. Что такое химический элемент? Почему его нельзя отождествлять с ато­мом или веществом?
40. Превращается ли один элемент в другой, если атом теряет (присоеди­няет) электрон? Ответ объясните.
41. Найдите в периодической системе и прочитайте такие символы химиче­ских элементов: Li, Н, Al, 0, С, Na, S, Cu, Ag, N, Au. Назовите эти элементы.
42. Какой из символов соответствует Ферруму (F, Fr, Fe), Силицию (С, Cl, S, Si, Sc), Карбону (К, С, Co, Ca, Cr, Kr)?
43. Выпишите из периодической системы символы всех элементов, кото­рые начинаются на букву А. Сколько существует таких элементов?
44. Подготовьте краткое сообщение о происхождении названий Гидрогена, Гелия или любого другого элемента.
45. Заполните пропуски: a) Z(...) = 8, Z(...) = 12; б) Z(C) = ..., Z(Na) = ...

46. Заполните таблицу:

47. Воспользовавшись данными, приведенными в тексте параграфа, определите, сколько приблизительно атомов Оксигена приходится в земной коре на I атом Силиция и на I атом Алюминия.

Для любознательных

Химические элементы в живой природе Подсчитано, что в среднем 80 % массы растений приходится на воду. В организмах животных и человека это вещество также преобладает. Следовательно, наиболее распространенным элементом в живой природе, как и в гидросфере, является Гидроген.


Рис. 34. Химические элементы в организме взрослого человека (в процентах от общего количества атомов)

Организму человека необходимы более 20 химических элементов. Их называют биоэлементами (рис. 34). Они содержатся в воздухе, воде, а также многих веществах, попадающих в организм вместе с пищей. Карбон, Оксиген, Гидроген, Нитроген, Сульфур находятся в белках, других веществах, из которых состоит организм. Калий и Натрий содержатся в крови, клеточных жидкостях и т. п. Оксиген, Фосфор и Кальций необходимы для формирования костей. Очень важны для человека Феррум, Флуор, Иод. Недостаток Феррума в организме приводит к малокровию, Флуора - служит причиной кариеса, а Иода - замедляет умственное развитие ребенка.

Доктор физико-математических наук М. КАГАНОВ.

По давней традиции журнал "Наука и жизнь" рассказывает о новейших достижениях современной науки, о последних открытиях в области физики, биологии и медицины. Но чтобы понимать, насколько они важны и интересны, необходимо хотя бы в общих чертах иметь представление об основах наук. Современная физика развивается стремительно, и люди старшего поколения, те, кто учился в школе и в институте лет 30-40 назад, со многими ее положениями незнакомы: их тогда попросту не существовало. А молодые наши читатели еще не успели про них узнать: научно-популярная литература практически перестала издаваться. Поэтому мы попросили давнего автора журнала М. И. Каганова рассказать об атомах и элементарных частицах и о законах, ими управляющих, о том, что же представляет собой материя. Моисей Исаакович Каганов - физик-теоретик, автор и соавтор нескольких сотен работ по квантовой теории твердого тела, теории металлов и магнетизму. Был ведущим сотрудником Института физических проблем им. П. Л. Капицы и профессором МГУ им. М. В. Ломоносова, членом редколлегий журналов "Природа" и "Квант". Автор многих научно-популярных статей и книг. Сейчас живет в Бостоне (США).

Наука и жизнь // Иллюстрации

Греческий философ Демокрит первым произнес слово "атом". Согласно его учению, атомы неделимы, неуничтожимы и находятся в постоянном движении. Они бесконечно разнообразны, имеют впадины и выпуклости, которыми сцепляются, образуя все материальные тела.

Таблица 1. Важнейшие характеристики электронов, протонов и нейтронов.

Атом дейтерия.

Английский физик Эрнст Резерфорд по праву считается основоположником ядерной физики, учения о радиоактивности и теории строения атома.

На снимке: поверхность кристалла вольфрама, увеличенная в 10 миллионов раз; каждая яркая точка - его отдельный атом.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Работая над созданием теории излучения, Макс Планк в 1900 году пришел к выводу, что атомы нагретого вещества должны излучать свет порциями, квантами, имеющими размерность действия (Дж.с) и энергию, пропорциональную частоте излучения: Е = hn.

В 1923 году Луи де Бройль перенес идею Эйнштейна о двойственной природе света - корпускулярно-волновом дуализме - на вещество: движение частицы соответствует распространению бесконечной волны.

Опыты по дифракции убедительно подтвердили теорию де Бройля, которая утверждала, что движение любой частицы сопровождается волной, длина и скорость которой зависят от массы и энергии частицы.

Наука и жизнь // Иллюстрации

Опытный бильярдист всегда знает, как покатятся шары после удара, и легко загоняет их в лузу. С атомными частицами гораздо сложнее. Траекторию летящего электрона указать невозможно: он не только частица, но и волна, бесконечная в пространстве.

Ночью, когда в небе нет облаков, не видна Луна и не мешают фонари, небо заполнено ярко сияющими звездами. Не обязательно искать знакомые созвездия или стараться найти близкие к Земле планеты. Просто смотрите! Постарайтесь представить себе огромное пространство, которое заполнено мирами и простирается на миллиарды миллиардов световых лет. Только из-за расстояния миры кажутся точками, а многие из них так далеки, что не различимы в отдельности и сливаются в туманности. Кажется, что мы в центре мироздания. Теперь мы знаем, что это не так. Отказ от геоцентризма - большая заслуга науки. Потребовалось много усилий, чтобы было осознано: малютка-Земля движется в случайном, казалось бы, ничем не выделенном участке необозримого (буквально!) пространства.

Но на Земле зародилась жизнь. Она развивалась столь успешно, что сумела произвести человека, способного постигать окружающий его мир, искать и находить законы, управляющие природой. Достижения человечества в познании законов природы столь впечатляющи, что невольно испытываешь гордость от принадлежности к этой щепотке разума, затерянного на периферии заурядной Галактики.

Учитывая разнообразие всего, что нас окружает, поражает воображение существование общих законов. Не менее поразительно то, что все построено из частиц всего трех типов - электронов, протонов и нейтронов.

Чтобы, используя основные законы природы, вывести наблюдаемые и предсказать новые свойства разнообразных веществ и объектов, созданы сложные математические теории, разобраться в которых совсем не просто. Но контуры научной картины Мира можно постичь, не прибегая к строгой теории. Естественно, для этого необходимо желание. Но не только: даже на предварительное знакомство придется затратить определенный труд. Нужно постараться постичь новые факты, незнакомые явления, которые на первый взгляд не согласуются с имеющимся опытом.

Достижения науки часто приводят к мысли, что для нее "нет ничего святого": то, что вчера было истиной, сегодня отбрасывается. Со знаниями возникает понимание того, как трепетно наука относится к каждой крупице накопленного опыта, с какой осторожностью движется вперед, особенно в тех случаях, когда приходится отказываться от укоренившихся представлений.

Задача этого рассказа - познакомить с принципиальными чертами строения неорганических веществ. Несмотря на бесконечное разнообразие, их структура сравнительно проста. Особенно, если сравнивать их с любым, даже самым простым живым организмом. Но есть и общее: все живые организмы, как и неорганические вещества, построены из электронов, протонов и нейтронов.

Нельзя объять необъятное: для того чтобы, хотя бы в общих чертах, познакомить с устройством живых организмов, нужен специальный рассказ.

ВВЕДЕНИЕ

Разнообразие вещей, предметов - всего, чем мы пользуемся, что нас окружает, необозримо. Не только по своему предназначению и устройству, но и по используемым для их создания материалам - веществам, как принято говорить, когда нет необходимости подчеркивать их функцию.

Вещества, материалы выглядят сплошными, а осязание подтверждает то, что видят глаза. Казалось бы, нет исключений. Текучая вода и твердый металл, столь непохожие друг на друга, сходны в одном: и металл и вода сплошные. Правда, в воде можно растворить соль или сахар. Они находят себе в воде место. Да и в твердое тело, например в деревянную доску, можно вбить гвоздь. Приложив заметные усилия, можно добиться того, что место, которое было занято деревом, займет железный гвоздь.

Мы хорошо знаем: от сплошного тела можно отломить небольшой кусочек, можно измельчить практически любой материал. Иногда это трудно, порой происходит самопроизвольно, без нашего участия. Представим себя на пляже, на песке. Мы понимаем: песчинка - далеко не самая мелкая частица вещества, из которого состоит песок. Если постараться, можно песчинки уменьшить, например, пропустив через вальцы - через два цилиндра из очень твердого металла. Попав между вальцами, песчинка раздробится на более мелкие части. По сути, так из зерна на мельницах делают муку.

Теперь, когда атом прочно вошел в наше мироощущение, очень трудно представить себе, что люди не знали, ограничен процесс дробления или вещество можно размельчать до бесконечности.

Неизвестно, когда люди впервые задали себе этот вопрос. Впервые он был зафиксирован в сочинениях древнегреческих философов. Некоторые из них считали, что, сколько ни дроби вещество, оно допускает деление на еще более мелкие части - предела нет. Другие высказывали мысль, что существуют мельчайшие неделимые частицы, из которых и состоит все. Чтобы подчеркнуть, что частицы эти - предел дробления, они назвали их атомами (по-древнегречески слово "атом" означает неделимый).

Необходимо назвать тех, кто первым выдвинул идею существовования атомов. Это - Демокрит (родился около 460 или 470 года до новой эры, умер в глубокой старости) и Эпикур (341-270 годы до новой эры). Итак, атомному учению почти 2500 лет. Представление об атомах отнюдь не сразу восприняли все. Еще лет 150 назад уверенных в существовании атомов было мало даже среди ученых.

Дело в том, что атомы очень малы. Их невозможно разглядеть не только простым глазом, но и, например, с помощью микроскопа, увеличивающего в 1000 раз. Давайте задумаемся: каков размер самых маленьких частиц, которые можно увидеть? У разных людей разное зрение, но, наверное, все согласятся, что увидеть частицу размером менее 0,1 миллиметра нельзя. Поэтому, если воспользоваться микроскопом, можно, хотя и с трудом, разглядеть частицы размером около 0,0001 миллиметра, или 10 -7 метра. Сравнив размеры атомов и межатомных расстояний (10 -10 метра) с длиной, принятой нами как предел возможности увидеть, поймем, почему любое вещество кажется нам сплошным.

2500 лет - огромный срок. Что бы ни происходило в мире, всегда находились люди, которые пытались ответить себе на вопрос, как устроен окружающий их мир. В какие-то времена проблемы устройства мира волновали больше, в какие-то - меньше. Рождение науки в ее современном понимании произошло сравнительно недавно. Ученые научились ставить эксперименты - задавать природе вопросы и понимать ее ответы, создавать теории, описывающие результаты экспериментов. Теории потребовали строгих математических методов для получения достоверных выводов. Наука прошла длинный путь. На этом пути, который для физики начался около 400 лет назад с работ Галилео Галилея (1564-1642), добыто бесконечное количество сведений о строении вещества и свойствах тел разной природы, обнаружено и понято бесконечное количество разнообразных явлений.

Человечество научилось не только пассивно понимать природу, но и использовать ее в своих целях.

Мы не будем рассматривать историю развития атомных представлений на протяжении 2500 лет и историю физики в течение последних 400 лет. Наша задача - по возможности кратко и наглядно рассказать о том, из чего и как построено все - окружающие нас предметы, тела и мы сами.

Как было уже сказано, все вещества состоят из электронов, протонов и нейтронов. Знаю об этом со школьных лет, но меня не перестает поражать, что все построено из частиц всего трех сортов! А ведь мир так разнообразен! К тому же и средства, которыми пользуется природа для осуществления строительства, тоже достаточно однообразны.

Последовательное описание того, как построены вещества разного типа, - сложная наука. Она использует серьезную математику. Надо подчеркнуть - какой-то другой, простой теории не существует. Но физические принципы, лежащие в основе понимания строения и свойств веществ, хотя они нетривиальны и трудно представимы, все же постичь можно. Своим рассказом мы попытаемся помочь всем, кого интересует устройство мира, в котором мы живем.

МЕТОД ОСКОЛКОВ, ИЛИ РАЗДЕЛЯЙ И ПОЗНАВАЙ

Казалось бы, наиболее естественный способ понять, как устроено некое сложное устройство (игрушка или механизм), - разобрать, разложить на составные части. Надо только быть очень осторожным, помня, что сложить будет значительно труднее. "Ломать - не строить" - говорит народная мудрость. И еще: из чего состоит устройство, мы, может быть, поймем, но, как работает, вряд ли. Стоит иногда отвинтить один винтик, и все - устройство перестало работать. Нужно не столько разобрать, сколько разобраться.

Так как речь идет не о фактическом разложении всех окружающих нас предметов, вещей, организмов, а о воображаемом, то есть о мысленном, а не о настоящем опыте, то можно не волноваться: собирать не придется. Кроме того, не будем скупиться на усилия. Не будем задумываться, трудно или легко разложить устройство на составные части. Секундочку. А откуда мы знем, что дошли до предела? Может быть, добавив усилий, сможем пойти дальше? Признаемся себе: мы не знаем, дошли ли до предела. Приходится воспользоваться общепринятым мнением, понимая, что это не слишком надежный аргумент. Но если помнить о том, что это лишь общепринятое мнение, а не истина в последней инстанции, то опасность невелика.

Сейчас общепринято, что деталями, из которых все построено, служат элементарные частицы. И при этом далеко не все. Посмотрев в соответствующий справочник, мы убедимся: элементарных частиц более трехсот. Обилие элементарных частиц заставило задуматься о возможности существования субэлементарных частиц - частиц, из которых состоят сами элементарные частицы. Так появилась идея кварков. Они обладают тем удивительным свойством, что, по-видимому, не существуют в свободном состоянии. Кварков достаточно много - шесть, и у каждого имеется своя античастица. Возможно, путешествие в глубь материи не окончено.

Для нашего рассказа обилие элементарных частиц и существование субэлементарных несущественно. В построении веществ непосредственное участие принимают электроны, протоны и нейтроны - все построено только из них.

Прежде чем обсуждать свойства реальных частиц, задумаемся, какими нам бы хотелось видеть детали, из которых все построено. Когда речь идет о том, что хотелось бы видеть, конечно, надо учитывать разнообразие взглядов. Отберем несколько черт, которые кажутся обязательными.

Во-первых, элементарные частицы должны иметь свойство объединяться в разнообразные структуры.

Во-вторых, хочется думать, что элементарные частицы неуничтожимы. Зная, какую длинную историю имеет мир, трудно представить себе, что частицы, из которых он состоит, смертны.

В-третьих, хотелось бы, чтобы самих деталей было не слишком много. Глядя на строительные блоки, мы видим, сколь разнообразные постройки могут быть созданы из одинаковых элементов.

Знакомясь с электронами, протонами и нейтронами, мы увидим, что их свойства не противоречат нашим пожеланиям, а желанию простоты, несомненно, соответствует то, что в строении всех веществ принимают участие всего три типа элементарных частиц.

ЭЛЕКТРОНЫ, ПРОТОНЫ, НЕЙТРОНЫ

Приведем важнейшие характеристики электронов, протонов и нейтронов. Они собраны в таблицу 1.

Величина заряда дана в кулонах, масса - в килограммах (единицах СИ); слова "спин" и "статистика" будут пояснены ниже.

Обратим внимание на различие в массе частиц: протоны и нейтроны почти в 2000 раз тяжелее электронов. Следовательно, масса любого тела почти целиком определяется массой протонов и нейтронов.

Нейтрон, как это следует из его названия, нейтрален - его заряд равен нулю. А протон и электрон имеют одинаковые по величине, но противоположные по знаку заряды. Электрон заряжен отрицательно, а протон - положительно.

Среди характеристик частиц нет, казалось бы, важной характеристики - их размера. Описывая строение атомов и молекул, электроны, протоны и нейтроны можно считать материальными точками. О размерах протона и нейтрона придется вспомнить только при описании атомных ядер. Даже по сравнению с размерами атомов протоны и нейтроны чудовищно малы (порядка 10 -16 метра).

По сути дела, этот короткий раздел сводится к представлению электронов, протонов и нейтронов как строительного материала всех тел в природе. Можно было бы просто ограничиться таблицей 1, однако нам предстоит понять, каким образом из электронов, протонов и нейтронов осуществляется постройка, что заставляет частицы объединяться в более сложные конструкции и каковы эти конструкции.

АТОМ - НАИБОЛЕЕ ПРОСТАЯ ИЗ СЛОЖНЫХ КОНСТРУКЦИЙ

Атомов много. Оказалось необходимым и возможным упорядочить их специальным образом. Упорядочение дает возможность подчеркнуть различие и сходство атомов. Разумное расположение атомов - заслуга Д. И. Менделеева (1834-1907), который сформулировал периодический закон, носящий его имя. Если временно отвлечься от существования периодов, то принцип расположения элементов крайне прост: они располагаются последовательно по весу атомов. Самый легкий - атом водорода. Последний природный (не созданный искусственно) атом - атом урана, который тяжелее его в 200 с лишним раз.

Понимание строения атомов объяснило наличие периодичности в свойствах элементов.

В самом начале XX века Э. Резерфорд (1871-1937) убедительно показал, что почти вся масса атома сосредоточена в его ядре - небольшой (даже по сравнению с атомом) области пространства: радиус ядра приблизительно в 100 тысяч раз меньше размера атома. Когда Резерфорд производил свои эксперименты, еще не был открыт нейтрон. С открытием нейтрона было понято, что ядра состоят из протонов и нейтронов, а атом естественно представлять себе как ядро, окруженное электронами, число которых равно числу протонов в ядре - ведь в целом атом нейтрален. Протоны и нейтроны, как строительный материал ядра, получили общее название - нуклоны (с латинского nucleus - ядро). Этим названием мы и будем пользоваться.

Количество нуклонов в ядре принято обозначать буквой А . Ясно, что А = N + Z , где N - число нейтронов в ядре, а Z - число протонов, равное числу электронов в атоме. Число А носит название атомной массы, а Z - атомного номера. Атомы с одинаковыми атомными номерами называют изотопами: в таблице Менделеева они находятся в одной клеточке (по-гречески изос - равный, топос - место). Дело в том, что химические свойства изотопов почти тождественны. Если таблицу Менделеева рассмотреть внимательно, можно убедиться, что, строго говоря, расположение элементов соответствует не атомной массе, а атомному номеру. Если элементов около 100, то изотопов более 2000. Правда, многие из них неустойчивы, то есть радиоактивны (от латинского radio - излучаю, activus - деятельный), они распадаются, испуская различные излучения.

Опыты Резерфорда не только привели к открытию атомных ядер, но и показали, что в атоме действуют те же электростатические силы, которые отталкивают друг от друга одноименно заряженные тела и притягивают друг к другу разноименно заряженные (например, шарики электроскопа).

Атом устойчив. Следовательно, электроны в атоме движутся вокруг ядра: центробежная сила компенсирует силу притяжения. Понимание этого привело к созданию планетарной модели атома, в которой ядро - Солнце, а электроны - планеты (с точки зрения классической физики, планетарная модель непоследовательна, но об этом ниже).

Есть целый ряд способов оценить размер атома. Разные оценки приводят к близким результатам: размеры атомов, конечно, различны, но приблизительно равны нескольким десятым нанометра (1 нм = 10 -9 м).

Рассмотрим для начала систему электронов атома.

В Солнечной системе планеты притягиваются к Солнцу силой гравитации. В атоме действует электростатическая сила. Ее часто называют кулоновской в честь Шарля Огюстена Кулона (1736-1806), установившего, что сила взаимодействия между двумя зарядами обратно пропорциональна квадрату расстояния между ними. Тот факт, что два заряда Q 1 и Q 2 притягиваются или отталкивают ся с силой, равной F C = Q 1 Q 2 /r 2 , где r - расстояние между зарядами, носит название "Закон Кулона". Индекс "С" присвоен силе F по первой букве фамилии Кулона (по-французски Coulomb ). Среди самых различных утверждений мало найдется таких, которые столь же справедливо названы законом, как закон Кулона: ведь область его применимости практически не ограничена. Заряженные тела, каких бы они ни были размеров, а также атомные и даже субатомные заряженные частицы - все они притягиваются или отталкиваются в согласии с законом Кулона.

ОТСТУПЛЕНИЕ О ГРАВИТАЦИИ

С гравитацией человек знакомится в раннем детстве. Падая, он учится уважать силу притяжения к Земле. Знакомство с ускоренным движением обычно начинается с изучения свободного падения тел - движения тела под действием гравитации.

Между двумя телами массы М 1 и М 2 действует сила F N =- 1 М 2 /r 2 . Здесь r - расстояние между телами, G - гравитационная постоянная, равная 6,67259.10 -11 м 3 кг -1 с -2 , индекс "N" дан в честь Ньютона (1643 - 1727). Это выражение называют законом всемирного тяготения, подчеркивая его всеобщий характер. Сила F N определяет движение галактик, небесных тел и падение предметов на Землю. Закон всемирного тяготения справедлив при любом расстоянии между телами. Изменения в картину гравитации, которые внесла общая теория относительности Эйнштейна (1879-1955), мы упоминать не будем.

И кулоновская электростатическая сила, и ньютоновская сила всемирного тяготения одинаково (как 1/r 2) уменьшаются с увеличением расстояния между телами. Это позволяет сравнить действие обеих сил на любом расстоянии между телами. Если силу кулоновского отталкивания двух протонов сравнить по величине с силой их гравитационного притяжения, то окажется, что F N /F C = 10 -36 (Q 1 = Q 2 = e p ; M 1 = = M 2 = m p). Поэтому гравитация сколько-нибудь существенной роли в строении атома не играет: она слишком мала по сравнению с электростатической силой.

Обнаружить электрические заряды и измерить взаимодействие между ними не представляет труда. Если электрическая сила так велика, то почему она не важна, когда, скажем, падают, прыгают, бросают мяч? Потому что в большинстве случаев мы имеем дело с нейтральными (незаряженными) телами. В пространстве всегда очень много заряженных частиц (электронов, ионов разного знака). Под воздействием огромной (по атомным масштабам) притягивающей электрической силы, созданной заряженным телом, заряженные частицы устремляются к ее источнику, прилипают к телу и нейтрализуют его заряд.

ВОЛНА ИЛИ ЧАСТИЦА? И ВОЛНА И ЧАСТИЦА!

Об атомных и еще более мелких, субатомных, частицах очень трудно рассказывать главным образом потому, что их свойствам никаких аналогов в нашей повседневной жизни нет. Можно подумать, что частицы, из которых состоят такие маленькие атомы, удобно представлять себе в виде материальных точек. Но все оказалось гораздо сложнее.

Частица и волна... Казалось бы, даже сравнивать бессмысленно, настолько они различны.

Наверное, когда думаешь о волне, то прежде всего представляешь себе волнующуюся морскую поверхность. Волны на берег приходят из открытого моря, длины волн - расстояния между двумя последовательными гребнями - могут быть разными. Легко наблюдать волны, имеющие длину порядка нескольких метров. При волнении, очевидно, колеблется масса воды. Волна охватывает значитель ное пространство.

Волна периодичнa во времени и в пространстве. Длина волны (λ ) - мера пространственной периодичности. Периодичность волнового движения во времени видна в повторяемости прихода гребней волн к берегу, а можно ее обнаружить, например, по колебанию поплавка вверх-вниз. Обозначим период волнового движения - время, за которое проходит одна волна, - буквой Т . Величина, обратная периоду, называется частотой ν = 1. Самые простые волны (гармонические) имеют определенную частоту, которая не меняется во времени. Любое сложное волновое движение может быть представлено в виде совокупности простых волн (см. "Наука и жизнь" № 11, 2001 г.). Строго говоря, простая волна занимает бесконечное пространство и существует бесконечно долго. Частица, как мы ее себе представляем, и волна абсолютно не похожи.

Со времен Ньютона шел спор о природе света. Что есть свет - совокупность частиц (корпускул, от латинского corpusculum - тельце) или волн? Теории долго конкурировали. Волновая теория победила: корпускулярная теория не могла объяснить экспериментальные факты (интерференцию и дифракцию света). С прямолинейным распространением светового луча волновая теория легко справилась. Немаловажную роль сыграло то, что длина световых волн по житейским понятиям очень мала: диапазон длин волн видимого света от 380 до 760 нанометров. Более короткие электромагнитные волны - ультрафиолетовые, рентгеновские и гамма-лучи, а более длинные - инфракрасные, миллиметровые, сантиметровые и все остальные радиоволны.

К концу XIX века победа волновой теории света над корпускулярной казалась окончательной и бесповоротной. Однако ХХ век внес серьезные коррективы. Казалось, что свет или волны, или частицы. Оказалось - и волны и частицы. Для частиц света, для его квантов, как принято говорить, было придумано специальное слово - "фотон". Слово "квант" происходит от латинского слова quantum - сколько, а "фотон" - от греческого слова photos - свет. Слова, обозначающие название частиц, в большинстве случаев имеют окончание он . Как ни удивительно, в одних экспериментах свет ведет себя как волны, а в других - как поток частиц. Постепенно удалось построить теорию, предсказывающую, как, в каком эксперименте будет вести себя свет. В настоящее время эта теория всеми принята, разное поведение света уже не вызывает удивления.

Первые шаги всегда особенно трудны. Приходилось идти против устоявшегося в науке мнения, высказывать утверждения, кажущиеся ересью. Настоящие ученые искренне верят в ту теорию, которую они используют для описания наблюдаемых явлений. Отказаться от принятой теории очень трудно. Первые шаги сделали Макс Планк (1858-1947) и Альберт Эйнштейн (1879-1955).

Согласно Планку - Эйнштейну, именно отдельными порциями, квантами, свет излучается и поглощается веществом. Энергия, которую несет фотон, пропорциональна его частоте: Е = h ν. Коэффициент пропорциональности h назвали постоянной Планка в честь немецкого физика, который ввел ее в теорию излучения в 1900 году. И уже в первой трети XX века стало понятно, что постоянная Планка - одна из важнейших мировых констант. Естествен но, она была тщательно измерена: h = 6,6260755.10 -34 Дж.с.

Квант света - это много или мало? Частота видимого света порядка 10 14 с -1 . Напомним: частота и длина волны света связаны соотношением ν = c /λ, где с = 299792458.10 10 м/с (точно) - скорость света в вакууме. Энергия кванта h ν, как нетрудно видеть, порядка 10 -18 Дж. За счет этой энергии можно поднять на высоту 1 сантиметр массу в 10 -13 грамма. По человеческим масштабам чудовищно мало. Но это масса 10 14 электронов. В микромире совсем другие масштабы! Конечно, человек не может ощутить массу в 10 -13 грамма, но глаз человека столь чувствителен, что может увидеть отдельные кванты света - в этом убедились, произведя ряд тонких экспериментов. В обычных условиях человек не различает "зернистости" света, воспринимая его как непрерывный поток.

Зная, что свет имеет одновременно и корпускулярную и волновую природу, легче представить себе, что и "настоящие" частицы обладают волновыми свойствами. Впервые такую еретическую мысль высказал Луи де Бройль (1892-1987). Он не пытался выяснить, какова природа волны, характеристики которой предсказал. Согласно его теории, частице массой m , летящей со скоростью v , соответствует волна с длиной волны l = hmv и частотой ν = Е /h , где Е = mv 2 /2 - энергия частицы.

Дальнейшее развитие атомной физики привело к пониманию природы волн, описывающих движение атомных и субатомных частиц. Возникла наука, получившая название "квантовая механика" (в первые годы ее чаще называли волновой механикой).

Квантовая механика применима к движению микроскопических частиц. При рассмотрении движения обычных тел (например, любых деталей механизмов) нет никакoго смысла учитывать квантовые поправки (поправки, обязанные волновым свойствам материи).

Одно из проявлений волнового движения частиц - отсутствие у них траектории. Для существования траектории необходимо, чтобы в каждый момент времени частица имела определенную координату и определенную скорость. Но именно это и запрещено квантовой механикой: чстица не может иметь одновременно и определенное значение координаты х , и определенное значение скорости v . Их неопределенности и Dv связаны соотношением неопределенностей, открытым Вернером Гейзенбергом (1901-1974): Dх Dv ~ h/m , где m - масса частицы, а h - постоянная Планка. Постоянную Планка часто называют универсальным квантом "действия". Не уточняя термин действие , обратим внимание на эпитет универсальный . Он подчеркивает, что соотношение неопределенности справедливо всегда. Зная условия движения и массу частицы, можно оценить, когда нужно учитывать квантовые законы движения (другими словами, когда нельзя пренебречь волновыми свойствами частиц и их следствием - соотношениями неопределенности), а когда вполне можно пользоваться классическими законами движения. Подчеркнем: если можно, то и нужно, так как классическая механика существенно проще квантовой.

Обратим внимание на то, что постоянная Планка делится на массу (они входят в комбинации h/m ). Чем масса больше, тем роль квантовых законов меньше.

Чтобы почувствовать, когда пренебречь квантовыми свойствами заведомо можно, постараемся оценить величины неопределенностей Dх и Dv . Если Dх и Dv пренебрежимо малы по сравнению с их средними (классическими) значениями, формулы классической механики прекрасно описывают движение, если не малы, необходимо использовать квантовую механику. Нет смысла учитывать квантовую неопределенность и тогда, когда другие причины (в рамках классической механики) приводят к большей неопределенности, чем соотношение Гейзенберга.

Рассмотрим один пример. Помня, что мы хотим показать возможность пользоваться классической механикой, рассмотрим "частицу", масса которой 1 грамм, а размер 0,1 миллиметра. По человеческим масштабам это - крупинка, легкая, маленькая частица. Но она в 10 24 раз тяжелее протона и в миллион раз больше атома!

Пусть "наша" крупинка движется в сосуде, наполненном водородом. Если крупинка летит достаточно быстро, нам кажется, что она движется по прямой с определенной скоростью. Это впечатление ошибочно: из-за ударов молекул водорода по крупинке ее скорость при каждом ударе чуть изменяется. Оценим, на сколько именно.

Пусть температура водорода 300 К (температуру мы всегда измеряем по абсолютной шкале, по шкале Кельвина; 300 К = 27 o С). Умножив температуру в кельвинах на постоянную Больцмана k B , = 1,381.10 -16 Дж/К, мы выразим ее в энергетических единицах. Изменение скорости крупинки можно подсчитать, воспользовавшись законом сохранения количества движения. При каждом столкновении крупинки с молекулой водорода ее скорость изменяется приблизительно на 10 -18 см/с. Изменение происходит совершенно случайно и в случайном направлении. Поэтому величину 10 -18 см/с естественно считать мерой классической неопределенности скорости крупинки (Dv ) кл для данного случая. Итак, (Dv ) кл = 10 -18 см/с. Местоположение крупинки определить с точностью большей, чем 0,1 ее размера, по-видимому, очень трудно. Примем (Dх ) кл = 10 -3 см. Наконец, (Dх ) кл (Dv ) кл = 10 -3 .10 -18 = 10 -21 . Казалось бы, очень маленькая величина. Во всяком случае, неопределенности скорости и координаты так малы, что можно рассматривать среднее движение крупинки. Но по сравнению с квантовой неопределенностью, продиктованной соотношением Гейзенберга (Dх Dv = 10 -27), классическая неоднородность огромна - в этом случае превышает ее в миллион раз.

Вывод: рассматривая движение крупинки, учитывать ее волновые свойства, то есть существование квантовой неопределенности координаты и скорости, не нужно. Вот когда речь идет о движении атомных и субатомных частиц, ситуация резко меняется.

Частицы в составе атомного ядра состоят из еще более фундаментальных частиц — кварков.

На протяжении двух последних веков ученые, интересующиеся строением Вселенной, искали базовые строительные блоки, из которых состоит материя, — самые простые и неделимые составляющие материального мира. Атомная теория объяснила всё многообразие химических веществ, постулировав существование ограниченного набора атомов так называемых химических элементов, объяснив природу всех остальных веществ через различные их сочетания. Таким образом, от сложности и многообразия на внешнем уровне ученым удалось перейти к простоте и упорядоченности на элементарном уровне.

Но простая картина атомного строения вещества вскоре столкнулась с серьезными проблемами. Прежде всего, по мере открытия всё новых и новых химических элементов стали обнаруживаться странные закономерности в их поведении, которые, правда, удалось прояснить благодаря вводу в научный обиход периодической системы Менделеева . Однако представления о строении материи всё равно сильно усложнились.

В начале XX столетия стало ясно, что атомы отнюдь не являются элементарными «кирпичиками» материи, а сами имеют сложную структуру и состоят из еще более элементарных частиц — нейтронов и протонов, образующих атомные ядра, и электронов, которые эти ядра окружают. И снова усложненность на одном уровне, казалось бы, сменила простота на следующем уровне детализации строения вещества. Однако и эта кажущаяся простота продержалась недолго, поскольку ученые стали открывать всё новые и новые элементарные частицы . Труднее всего было разобраться с многочисленными адронами — тяжелыми частицами, родственными нейтрону и протону, которые, как оказалось, во множестве рождаются и тут же распадаются в процессе различных ядерных процессов.

Более того, в поведении различных адронов были обнаружены необъяснимые закономерности — и из них у физиков стало складываться некое подобие периодической таблицы. Использовав математический аппарат так называемой теории групп , физикам удалось объединить адроны в группы по восемь — два типа частиц в центре и шесть в вершинах правильного шестиугольника. При этом частицы из каждой восьмеричной группы, располагающиеся на одном и том же месте в таком графическом представлении, обладают рядом общих свойств, подобно тому как схожие свойства демонстрируют химические элементы из одного столбца таблицы Менделеева, а частицы, расположенные по горизонтальным линиям в каждом шестиугольнике, обладают приблизительно равной массой, но отличаются электрическими зарядами (см. рисунок). Такая классификация получила название восьмеричный путь (в честь одноименной доктрины в буддистской теологии). В начале 1960-х годов теоретики поняли, что такую закономерность можно объяснить лишь тем, что элементарные частицы на самом деле таковыми не являются, а сами состоят из еще более фундаментальных структурных единиц.

Эти структурные единицы назвали кварками (слово позаимствовано из замысловатого романа Джеймса Джойса «Поминки по Финнегану»). Эти новые обитатели микромира оказались существами весьма странными. Для начала, они обладают дробным электрическим зарядом: 1/3 или 2/3 заряда электрона или протона (см. таблицу). А далее, по мере развития теории, выяснилось, что отдельно их не увидишь, поскольку они вообще не могут пребывать в свободном, не связанном друг с другом внутри элементарных частиц состоянии, и о самом факте их существования можно судить только по свойствам, проявляемым адронами, в состав которых они входят. Чтобы лучше понять этот феномен, получивший название пленение или заточение кварков , представьте, что у вас в руках длинный эластичный шнур, каждый конец которого представляет собой кварк. Если приложить к такой системе достаточно энергии — растянуть и порвать шнур, то он порвется где-то посередине, и свободного конца вы не получите, а получите два резиновых шнура покороче, и у каждого из них опять окажется два конца. То же и с кварками: какими бы энергиями мы ни воздействовали на элементарные частицы, стремясь «выбить» из них кварки, нам этого не удастся — частицы будут распадаться на другие частицы, сливаться, перестраиваться, но свободных кварков мы не получим.

Сегодня, согласно теории, предсказывается существование шести разновидностей кварков, и в лабораториях уже открыты элементарные частицы, содержащие все шесть типов. Самые распространенные кварки — верхний , или протонный (обозначается u — от английского up , или p proton ) и нижний , или нейтронный (обозначается d — от down , или n — от neutron ), поскольку именно из них состоят единственные по-настоящему долгоживущие адроны — протон (uud ) и нейтрон (udd ). Следующий дублет включает странные кварки s (strange ) и очарованные кварки с (charmed ). Наконец, последний дублет состоит из красивых и истинных кварков — b (от beauty , или bottom ) и t (от truth , или top ). Каждый из шести кварков, помимо электрического заряда, характеризуется изотопическим (условно направленным) спином . Наконец, каждый из кварков может принимать три значения квантового числа, которое называется его цветом (color ) и обладает ароматом (flavor ). Конечно же, кварки не пахнут и не имеют цвета в традиционном понимании, просто такое название сложилось исторически для обозначения их определенных свойств (см. Квантовая хромодинамика).

Стандартная модель останавливается на уровне кварков в детализации строения материи, из которой состоит наша Вселенная; кварки — самое фундаментальное и элементарное в ее структуре. Однако некоторые физики-теоретики полагают, что «луковицу можно лущить и дальше», но это уже чисто умозрительные построения. По моему личному мнению, Стандартная модель правильно описывает строение вещества, и хотя бы в этом направлении наука дошла до логического завершения процесса познания.

К середине шестидесятых годов XX столетия, когда наряду с протоном и нейтроном было открыто несколько десятков «элементарных» частиц, стало ясно, что эти «элементарные» частицы состоят из более фундаментальных частиц. В 1964 г. Независимо друг от друга М. Гелл-Манн и Д. Цвейг предложили составную кварковую модель адронов.
Кварки объединяются в частицы, называемые адронами . Термин «адрон» происходит от греческого «хадрос» – сильный и отражает свойство адронов участвовать в сильных взаимодействиях. Адроны – связанные системы кварков и антикварков. Адроны существуют двух типов – барионы и мезоны.

Рис. 11.1. Типы адронов и их кварковый состав.

Квантовые числа кварков, образующих адрон, определяют квантовые числа адронов. Адроны имеют определенные значения электрического заряда Q, спина J, чётности P, изоспина I. Квантовые числа s (странность), c (очарование или шарм), b (bottom) и t (top) разделяют адроны на обычные нестранные частицы (р, n, π, …), странные частицы (K, Λ, Σ, …), очарованные (D, Λ c , Σ c , …) и боттом-частицы (B, Λ b , Ξ b). t‑кварк имеет время жизни ≈ 10 -25 с, поэтому за такое короткое время он не успевает образовать адрон.
Всё многообразие адронов возникает в результате различных сочетаний u-, d-, s-, c-, b-кварков, образующих связанные состояния.
Квантовые характеристики кварков приведены в табл. 11.1. Каждый кварк имеет еще три цветные степени свободы (красный, синий, зеленый). Цветные степени свободы в таблице не указаны. Античастицы кварков – антикварки.

Таблица 11.1

Характеристики кварков

Характеристика Тип кварка (аромат)
d u s c b t
Электрический заряд Q,
в единицах е
-1/3 +2/3 -1/3 +2/3 -1/3 +2/3
Барионное число B +1/3
Спин J 1/2
Четность P +1
Изоспин I 1/2 0
Проекция изоспина I 3 -1/2 +1/2 0
Странность s 0 0 -1 0 0 0
Очарование (charm) c 0 0 0 +1 0 0
Bottom b 0 0 0 0 -1 0
Top t 0 0 0 0 0 +1
0.33 0.33 0.51 1.8 5 180
Масса токового кварка 4-8 МэВ 1.5-4 МэВ 80-130 МэВ 1.1-1.4 ГэВ 4.1-4.9 ГэВ 174±5 ГэВ

Квантовые характеристики антикварков приведены в табл. 11.2.

Таблица 11.2

Характеристики антикварков

Характеристика Тип кварка (аромат)
d u s c b t
Электрический заряд Q,
в единицах е
+1/3 -2/3 +1/3 -2/3 +1/3 -2/3
Барионное число B -1/3
Спин J 1/2
Четность P -1
Изоспин I 1/2 0
Проекция изоспина I 3 +1/2 -1/2 0
Странность s 0 0 +1 0 0 0
Очарование (charm) c 0 0 0 -1 0 0
Bottom b 0 0 0 0 +1 0
Top t 0 0 0 0 0 -1
Масса конституэнтного кварка mс 2 , ГэВ 0.33 0.33 0.51 1.8 5 180
Масса токового кварка 4-8 МэВ 1.5-4 МэВ 80-130 МэВ 1.1-1.4 ГэВ 4.1-4.9 ГэВ 174±5 ГэВ

Кварки не существуют в свободном состоянии, а заключены в кварковых системах – адронах. Поэтому им нельзя освободиться от взаимодействия с другими кварками, находящимися в том же объеме и связывающими их в адрон глюонами.
Барионное число B − квантовая характеристика частиц, отражающая установленный на опыте ещё до открытия кварков закон сохранения числа барионов. Так например, протон без нарушения законов сохранения энергии, импульса, момента количества движения, электрического заряда мог бы распасться на позитрон e + и γ-квант

или на положительно заряженный пион π + и γ-квант

Однако такие распады не наблюдаются. Это можно понять, приписав протону барионное число В = +1 и считать, что все частицы, состоящие из трёх кварков, имеют барионное число, равное плюс единице. Мезоны имеют барионное число В = 0. Антибарионы имеют барионное число В = -1. Лептоны имеют барионное число В = 0.
Все имеющиеся опытные данные свидетельствуют о существовании закона сохранения барионного числа (заряда) или закона сохранения числа барионов:

Барионное число является аддитивным квантовым числом. Барионные числа адронов – следствие их кварковой структуры. Кваркам приписывают барионное число В = +1/3, а антикваркам В = -1/3. Тогда все частицы, состоящие из трех кварков (барионы), будут иметь барионное число В = +1, частицы из трех антикварков (антибарионы) − B = -1, а частицы из кварка и антикварка (мезоны) − B = 0.
В отличие от точечных кварков, адроны протяжённые объекты, т. е. имеют размер (≈ 1 Фм). Среднеквадратичные зарядовые радиусы протона p, пиона π и каона K

дают представление о размерах этих адронов.

Ф. Вилчек: «Кварки рождаются свободными, но встречаются только связанными… В начале двадцатого века, после пионерских экспериментов Резерфорда, Гейгера и Марсдена, физики открыли, что большая часть массы и весь положительный заряд внутри атома сконцентрированы в крошечных ядрах. В 1932 г. Чедвик открыл нейтроны, которые вместе с протонами могли бы рассматриваться как составляющие атомного ядра. Однако известных тогда сил гравитации и электромагнетизма было недостаточно, для того чтобы связать протоны и нейтроны в такие малые объекты, как наблюдаемые ядра. Физики столкнулись с новым видом взаимодействия, самым сильным в природе. Объяснение этой новой силы стало основной задачей теоретической физики.
Для решения указанной проблемы физики в течение многих лет собирали данные, полученные, в основном, из изучения результатов столкновений протонов и нейтронов. Однако результаты этих исследований оказывались громоздкими и сложными.
Если бы частицы в указанных экспериментах были фундаментальными (неделимыми), то после их столкновения следовало бы ожидать те же частицы, только выходящие по измененным траекториям. Вместо этого на выходе, после столкновения, часто оказывалось множество частиц. Конечное состояние могло содержать как несколько копий исходных частиц, так и другие частицы. Многие новые частицы были открыты именно таким образом. Несмотря на то, что эти частицы, называемые адронами, были нестабильны, их свойства были очень схожи со свойствами нейтронов и протонов. Тогда характер исследования изменился. Уже не казалось естественным полагать, что речь идет просто об изучении новой силы, связывающей протоны и нейтроны в атомные ядра. Скорее, открылся новый мир явлений. Этот мир состоял из множества новых неожиданных частиц, преобразующихся друг в друга удивительно большим количеством способов. Отражением изменения во взглядах стало и изменение в терминологии.
Вместо ядерных сил физики стали говорить о сильном взаимодействии.
В начале 1960-х годов Мюррей Гелл-Ман и Джордж Цвейг совершили огромный прорыв в теории сильного взаимодействия, предложив концепцию кварков. Если вы представите, что адроны не являются фундаментальными частицами, а состоят из некоторого числа неделимых кварков, то все становится на свои места. Десятки наблюдаемых адронов, по крайней мере в грубом приближении, можно объяснить различными возможными способами соединений всего трех типов («ароматов») кварков. Один и тот же набор кварков может иметь различные пространственные орбиты и разнообразные спиновые конфигурации. Энергия такой системы будет зависеть от всех этих факторов, и таким образом получатся состояния с разными энергиями, соответствующие частицам с разными массами, согласно формуле m = E/c 2 . Это аналогично тому, как спектр возбужденных состояний в атоме мы понимаем как проявление различных орбит и спиновых конфигураций электронов. (Правда, энергии взаимодействия электронов в атомах относительно малы, и влияние этих энергий на полную массу атома незначительно.)
Тем не менее, правила использования кварков для описания реалистических моделей казались довольно странными и непонятными.
Предполагалось, что кварки едва ли чувствуют присутствие друг друга, когда находятся рядом, но если вы попытаетесь их изолировать друг от друга, то обнаружите, что это невозможно. Усиленные попытки найти изолированный кварк успехом так и не увенчались. Наблюдаемыми оказались только связанные состояния кварка с антикварком (мезоны) и трех кварков (барионы). Этот принцип, выведенный из экспериментальных наблюдений, назвали конфайнментом. Однако возвышенное название не сделало само явление менее таинственным.
Была у кварков и еще одна примечательная особенность. Предполагалось, что их электрические заряды являются дробными (1/3 или 2/3) по отношению к основному единичному заряду, например, электрона или протона. Все остальные наблюдаемые заряды известны с большой точностью и кратны основному. Кроме того, тождественные кварки не подчиняются обычным правилам квантовой статистики. Эти правила требуют, чтобы кварки, как частицы со спином 1/2, были фермионами с антисимметричными волновыми функциями (если не учитывать цветовую симметрию). Однако наблюдаемые данные о барионах не могут быть объяснены с помощью антисимметричных волновых функций они должны быть симметричными.
Атмосфера таинственности вокруг свойств кварков еще более сгущалась, когда Дж. Фридман. Г.Кендалл, Р. Тейлор и их коллеги на линейном ускорителе в Стэнфорде (SLAC) направили фотоны с высокой энергией на прогоны и обнаружили внутри нечто вроде кварков. Неожиданным было то. что при сильных столкновениях кварки двигаются (точнее, переносят энергию и импульс) так, как если бы они были свободными частицами. До этого эксперимента большинство физиков предполагало, что каким бы ни было сильное взаимодействие кварков, оно должно заставить кварки обильно излучать энергию, и, следовательно, после резкого ускорения энергия движения должна быстро рассеиваться»
.

Некоторые барионы

Частица Кварковая
структура
Масса
mc 2 , МэВ
Время жизни
t (сек) или
ширина Г
Спин-четность,
изоспин J P (I)
Основные
моды распада
p uud 938.27 >10 32 лет 1/2 + (1/2)
n udd 939.57 885.7±0.8 1/2 + (1/2) pe - e
Λ uds 1116 2.6×10 -10 1/2 + (0) pπ - , nπ 0
Σ + uus 1189 0.80×10 -10 1/2 + (1) pπ 0 , nπ +
Σ 0 uds 1193 7.4×10 -20 1/2 + (1) Λγ
Σ - dds 1197 1.5×10 -10 1/2 + (1) nπ -
Ξ 0 uss 1315 2.9×10 -10 1/2 + (1/2) Λπ 0
Ξ - dss 1321 1.6×10 -10 1/2 + (1/2) Λπ -
Δ ++ uuu 1230-1234 115-125 МэВ 3/2 + (3/2) (n или p) + p
Δ + uud
Δ 0 udd
Δ + ddd
Σ(1385) + uus 1383 36 МэВ 3/2 + (1) Λπ, Σπ
Σ(1385) 0 uds 1384 36 МэВ
Σ(1385) - dds 1387 39 МэВ
Ξ(1530) 0 uss 1532 9.1 МэВ 3/2 + (1/2) Ξπ
Ξ(1530) - dss 1535 9.9 МэВ
Ω - sss 1672 0.82×10 -10 3/2 + (0) ΛK - , Ξ 0 π -
N(1440) + uud 1430-1470 250-450 МэВ 1/2 + (1/2) n(π)+p(2π), Δπ
N(1440) 0 udd
N(1520) + uud 1515-1530 110-135 МэВ 3/2 - (1/2) n(π)+p(2π), Δπ
N(1520) 0 udd
udc 2285 2.0×10 -13 1/2 + (0) (n или p)+др.
Σ c (2455) ++ uuc 2453 2.2 МэВ 1/2 + (1) π
Σ c (2455) + udc 2451 < 4.6 МэВ
Σ c (2455) 0 ddc 2452 2.2 МэВ
udb 5620 1.4×10 -13 1/2 + (0) e -
usb 5792 1.4×10 -12 1/2 + (1/2) Ξ - e - X

Некоторые мезоны

Частица Кварковая
структура
Масса
mc 2 , МэВ
Время жизни
t (сек) или
ширина Г
Спин-четность,
изоспин J P (I)
Основные
моды распада
π + u 139.57 2.6×10 -8 0 - (1) ν μ μ +
π - d μ μ -
π 0 u - d 134.98 8.4×10 -17
K + u 494 1.2×10 -8 0 - (1/2) ν μ μ + , π 0 π +
K - s μ μ - , π 0 π -
K 0 d 498 8.9×10 -11 0 - (1/2) π + π - , π 0 π 0
K 0 s 5.2×10 -8 πeν, πμν, 3π
η u + d - 2s 548 1.29 кэВ 0 - (0) 2γ, 3π
η" u + d + s 958 0.20 МэВ 0 - (0) η2π, ρ 0 γ
ρ + u 776 150 МэВ 1 - (1) ππ
ρ - d ππ
ρ 0 u - d 776 150 МэВ ππ
ω u + d 783 8.5 МэВ 1 - (0)
¢ s 1019 4.3 МэВ 1 - (0) K + K - ,
D + c 1869 1.0×10 -12 0 - (1/2) K+др., e+др., μ+др.
D - d K+др., e+др., μ+др.
D 0 c 4.1×10 -13 0 - (1/2) K+др., e+др., μ+др.
D 0 u K+др., e+др., μ+др.
c 1968 4.9×10 -13 0 - (0) K+др.
s K+др.
B + u 5279 1.7×10 -12 0 - (1/2) D+др., D * +др., ν+др.
B - b D+др., D * +др., ν+др.
B 0 d 5279 1.5×10 -12 0 - (1/2) D+др., D * +др., ν+др.
B 0 b D+др., D * +др., ν+др.
J/ψ c 3097 91 кэВ 1 - (0) адроны, 2e, 2μ
Y b 9460 53 кэВ 1 - (0) τ + τ-, μ + μ-, e + e-

Кварки, образующие адроны, могут находиться в состояниях с различными орбитальными моментами l q и в состояниях с различными значениями радиального квантового числа n. Так как кварк имеет положительную чётность, а антикварк - отрицательную, чётности барионов, антибарионов и мезонов определяются соотношениями

где L - результирующий орбитальный момент кварков в адроне.
Аналогичным образом можно получить формулу для чётности мезона/антимезона:

Спины кварков могут быть ориентированы различным образом. Поэтому для одной и той же кварковой комбинации допустимы различные значения полного момента и чётности J P . Энергия (масса) фиксированной кварковой комбинации зависит от J P и других квантовых чисел, таких как изоспин, т. е. для каждой кварковой комбинации получается набор энергий (масс). Такова суть спектроскопии адронов, которая по существу не отличается от атомной или ядерной спектроскопии. Отличие в атоме состоит в том, что если в атоме (или в ядре) с определённым внутренним составом частиц изменяется энергия и квантовые числа, то это означает переход в другое состояние этого же атома (ядра). В физике адронов изменение энергии (массы) и квантовых чисел фиксированной кварковой комбинации означает переход к другой частице.

Адроны - бесцветные образования цветных кварков

Почему существует столь ограниченный набор связанных кварковых структур - трёхкварковые и кварк-антикварковые состояния? Для ответа на этот вопрос нужно пояснить понятие бесцветного состояния . Кварковая модель в своем первоначаль­ном варианте не содержала понятия «цвет». Исходная модель смогла представить все многочисленное семейство адронов всего лишь в виде трех кварковых комбинаций − qqq (барионы), (антибарионы) и q (мезоны). Однако оставалось неясным, почему других комбинаций кварков, например, qq, qq, q, qqqq, qq, q и т.д. в природе нет, да и сами отдельные кварки не наблюдаются. Кроме того, были известны барионы из трех тождественных кварков – uuu (Δ ++ -резонанс), ddd (Δ - ‑резонанс), sss (Ω - -гиперон), в которых кварки находились в одинаковых квантовых состояниях, что противоречило принципу Паули. Все эти трудности начального варианта кварковой модели снимались введением для кварков еще одного квантового числа, названного цветом . Это квантовое число должно было иметь три возможных значения с тем, чтобы можно было восстановить принцип Паули для барионов, построенных из трех кварков одинакового аромата. Эти три возможных значения цвета – красный (к), зеленый (з) и синий (с) – можно рассматривать как три проекции своеобразного цветового спина в трехмерном цветовом пространстве (с осями К, З. С).
С введением цвета Δ ++ -резонанс, например, можно представить как комбинацию трех u-кварков в разных цветовых состояниях: Δ ++ = u к u з u с. Это означало, что принцип Паули справедлив и в физике адронов. Однако, ограничиться только трехзначностью цвета было невозможно. Оставалась ещё одна проблема. Если u к u з u с - это единственный вариант Δ ++ ‑резонанса, то для протона можно предложить несколько кандидатов, не нарушая принципа Паули: u к u з d с, u к u з d з, u с u к d к и т. д. Но существует только одно протонное состояние и введение нового квантового числа «цвет» не должно увеличивать число наблюдаемых состояний.
Выходом из этой ситуации явилось принятие постулата о бесцветности наблюдаемых квантовых состояний адронов. Бесцветность адронов означает, что в них кварки разного цвета представлены с равными весами. О таких бесцветных состояниях говорят как о цветовых синглетах. Они инвариантны относительно преобразований в трехмерном цветовом пространстве. Если цветовой индекс кварка принимает три значения α = 1, 2, 3, то такие преобразования имеют вид

при условии ортонормированности цветовых состояний

где (*) означает комплексное сопряжение, а δ βγ − символ Кронекера.
В отличие от цветных кварков, их наблюдаемые комбинации − адроны − всегда бесцветны. В них все кварковые цвета представлены с одинаковыми весами. В этом состоит аналогия между цветом в оптике ик вантовым числом цвет. В обоих случаях равномерная смесь трёх базовых цветов дает бесцветную (белую) комбинацию.
Рассмотрим вопрос о том, как цветовые степени свободы кварков должны быть учтены в волновых функциях адронов Y. Поскольку эти степени свободы не зависят от других кварковых степеней свободы – пространственных координат, спина и аромата, то цветовая часть полной волновой функции адрона может быть выделена в виде множителя ψ color:

Ψ = ψ color Ф,

где Ф − часть волновой функции адрона, куда входят пространственные (space ), спиновые (spin ) и ароматовые (flavor ) степени свободы кварков. Установим вид ψ color . Он различен для мезонов и барионов.
Кварковая структура мезонов q. Для того, чтобы мезон был бесцветным, все возможные цвета кварка (антикварка) в нём должны быть представлены с одинаковым весом, что дает цветовую структуру мезона ~ (k+з +с ). Поэтому, независимо от типа (кваркового состава) мезона цветовая часть его волновой функции с учетом нормировки имеет вид

При установлении вида цветовой волновой функции бариона необходимо учесть принцип Паули. В состав бариона могут входить тождественные кварки, а, поскольку кварки являются фермионами, то в таких барионах эти кварки не должны находиться в одинаковых квантовых состояниях. В случае мезонов такого ограничения нет, так как они содержат только различные частицы - кварк и антикварк. Это означает, что волновая функция бариона, содержащего кварки одинакового аромата, должна быть антисимметричной при перестановке этих кварков.

Рассмотрим ситуацию на примере Δ ++ -резонанса, состоящего из трёх u-кварков. Его спин-чётность J P = 3/2 + . Эксперименты показали, что его волновая функция симметрична по пространственным координатам кварков и не имеет узлов. Следовательно, орбитальный момент кварков L = 0 и полный момент J P = 3/2 целиком обусловлен спинами кварков, направленными в одну сторону (). Такое спиновое состояние симметрично. Следовательно, пространственно-спиново-ароматовая волновая функция Δ ++ -резонанса F симметрична по этим трём переменным. Как показывает опыт это утверждение справедливо для всех барионов, т. е. все барионы имеют волновые функции, полностью симметричные к одновременной перестановке пространственных координат, спинов и ароматов любых двух кварков. Для того чтобы быть антисимметричной в целом, полная волновая функция Y любого бариона должна содержать антисимметричную цветовую функцию ψ color . Нормированная антисимметричная цветовая волновая функция бариона имеет вид

Такая цветовая функция автоматически обеспечивает выполнение принципа Паули, запрещающего существование бариона, содержащего кварки одного и того же аромата в полностью одинаковых квантовых состояних. Ароматово-цветовая волновая функция Δ ++ -резонанса имеет вид

Требуемая антисимметризация волновой функции Δ ++ -резонанса получена. Она антисимметрична по цвету, симметрична по пространственным координатам (орбитальные моменты кварков нулевые) и спинам (). Таким образом, волновая функция Δ ++ -резонанса Y антисимметрична в целом, как и должно быть для систем, содержащих тождественные фермионы. Легко проверить выполнение принципа Паули для этого состояния. Пусть зелёный u-кварк стал красным: u з → u к. Тогда в Δ ++ ‑резонансе имеем два красных u-кварка в одном и том же состоянии. При этом волновая функция Δ ++ -резонанса обращается в нуль.



© dagexpo.ru, 2024
Стоматологический сайт