Патологическая физиология воспаления. Медиатор воспаления - брадикинин Значение повреждения при развитии воспалительных процессов

28.06.2020

Каждое воспаление развивается в ответ на то или иное повреждение ткани.

Поврежденная ткань существенно отличается от здоровой по своим свойствам и химическому составу. В поврежденной ткани развиваются ацидоз, увеличение осмотического давления, увеличение количества воды в ткани, изменение коллоидного состава протоплазмы, освобождение биологически активных веществ (гистамин, брадикинин и др.). Изменение состава и свойств поврежденной ткани является раздражителем, вызывающим изменения микроциркуляции крови в капиллярах, артериолах и венулах. Эти изменения обусловливают сосудистую воспалительную реакцию. Альтерация ткани при воспалении сопровождается рядом изменений ее структуры. Развиваются разные выражения ее дистрофии (вакуольная, белковая, жировая и др.).

Изменения обмена веществ в воспаленной ткани

Повреждение клеток, в ответ на которое возникает воспаление, распространяется на субклеточные структуры - митохондрии, которые являются основными носителями окислительно-восстановительных ферментов. Поэтому окислительные процессы в воспаленной ткани, измеряемые по количеству поглощенного кислорода, обычно менее интенсивны, чем таковые в здоровых, неповрежденных тканях. Кроме того, окислительные процессы в воспаленной ткани вследствие нарушения активности ферментов цикла Кребса в некоторой части не заканчиваются выделением СО 2 , а останавливаются на промежуточных продуктах этого цикла с образованием пировиноградной, альфа-кетоглютаровой, яблочной, янтарной и других кислот. Отсюда возникает понижение дыхательного коэффициента в воспаленной ткани. Снижение окислительных процессов в воспаленной ткани выражается также в снижении ее окислительно-восстановительного потенциала.



Выделяемая при дыхании воспаленной ткани углекислота связывается буферными системами экссудата в меньшем количестве, чем в крови, вследствие истощения буферных систем экссудата за счет связывания указанных органических кислот.

Повреждение других субклеточных структур в воспаленной ткани - лизосом - сопровождается освобождением большого количества гидролитических ферментов (катепсинов), ферментов гликолиза и липолиза.

Источником этих ферментов являются лизосомы нейтрофилов крови, микрофагов и паренхиматозных клеток той ткани, где происходит воспаление. Следствием активации процессов протеолиза, гликолиза и липолиза является освобождение большого количества органических кислот цикла Кребса, жирных кислот, молочной кислоты, полипептидов и аминокислот. Следствием этих процессов является увеличение осмотического давления - гиперосмия. Увеличение осмотического давления происходит в связи с распадом крупных молекул на большое количество мелких (возрастает молекулярная концентрация). Накопление указанных кислых продуктов приводит к увеличению концентрации водородных ионов в воспаленной ткани - гиперионии и ацидозу (рис. 21). Разрушение кислот сопровождается накоплением в воспаленной ткани ионов калия, натрия, хлора, анионов фосфорной кислоты и др.

Боль и жар при воспалении

Раздражение чувствительных нервных окончаний в воспаленной ткани осмотически активными веществами, кислотами, полипептидами (брадикинин), гистамином, ионами калия вызывает характерный признак воспаления - боль. Имеет значение также повышение возбудимости рецепторов в воспаленной ткани под влиянием ионов водорода и калия.

Расширение артериол и возникновение капиллярного пульса в воспаленной ткани (см. ниже) вызывают механическое раздражение чувствительных нервных окончаний в очаге воспаления. Это приводит к характерным пульсирующим болям, хорошо известным при пульпите, панариции и других острых гнойных воспалениях.

Одним из важных признаков воспаления является «жар» - гипертермия, т. е. повышение температуры в воспаленной ткани. В механизме этого явления участвуют следующие процессы. Если воспаление развивается на поверхности тела (например, на коже), активная гиперемия способствует быстрому поступлению более теплой артериальной крови в область тела с относительно низкой температурой (25-30°) и вызывает ее нагревание. Именно эту форму повышения температуры в воспаленной ткани наблюдали древние врачи, когда описывали «жар» как признак воспаления. Повышение температуры в воспаленной ткани наблюдается, однако, и в глубоколежащих внутренних органах, имеющих в норме высокую температуру (например, печень имеет нормальную температуру 40°). В этих случаях повышение температуры вызывается освобождением, тепла в результате повышения обмена веществ.

Расстройства кровообращения и микроциркуляции в воспаленной ткани

Расстройство кровообращения в воспаленной ткани можно наблюдать под микроскопом на прозрачных тканях холоднокровных животных. Классическими объектами являются препараты языка или брыжейки лягушки, брыжейки крысы и морской свинки. Используют также ткани мочевого пузыря и плавательной перепонки лягушки. Подробное описание расстройств кровообращения в этих тканях было сделано Копгеймом и известно в истории изучения воспаления как «опыт Конгейма». Он заключается в следующем: язык или брыжейку лягушки растягивают на пробковом кольце вокруг отверстия на препаровальной доске, которую устанавливают под микроскопом. Фактором, вызывающим воспаление, является часто уже само приготовление препарата. Повреждение ткани можно вызвать также, положив на нее кристаллик поваренной соли. Под малым увеличением легко наблюдать процесс расширения артериол, капилляров и венул, маятникообразные движения крови и стаз. Под большим увеличением отмечаются процессы прилипания лейкоцитов к стенке кровеносных сосудов и эмиграции их в воспаленную ткань (рис. 22).

В настоящее время для изучения расстройств микроциркуляции при воспалении у теплокровных животных вживляют прозрачные пластинки в серозные полости, используют методы микроскопии терминальных сосудов защечного мешка хомячка, мигательной перепонки глаза кролика и пр. Широко используются микрокиносъемки, инъекции сосудов коллоидными и флюоресцирующими красками. Широко применяются методы введения меченных изотопами белков и других веществ.

Расстройства кровообращения в воспаленной ткани развиваются в виде следующих четырех стадий:

  • 1) кратковременное сужение артериол;
  • 2) расширение капилляров, артериол и венул - стадия активной или артериальной гиперемии;
  • 3) застой крово- и лимфообращения в воспаленной ткани - стадия пассивной, или венозной, гиперемии;
  • 4) остановка кровообращения в воспаленной ткани - стаз.

Кратковременное сужение артериол при воспалении вызывается раздражением сосудосуживающих нервов и гладкомышечных клеток артериол повреждающими агентами, которые вызывают воспаление. Сужение артериол является кратковременным потому, что первичное раздражающее действие быстро проходит. Медиатор симпатической иннервации артериол - норадреналин - разрушается моноаминоксидазой, количество которой увеличивается в воспаленной ткани.

Развивается расширение артериол, капилляров и вен, сопровождающееся ускорением тока крови - артериальная гиперемия . Увеличивается как линейная, так и объемная скорость тока крови (см. табл. 16). Вследствие преобладания притока крови из расширенных артериол в воспаленную ткань над ее оттоком повышается давление крови в капиллярах и венах воспаленной ткани.

Стадия артериальной гиперемии характеризуется:

  • 1) расширением артериол, капилляров и венул;
  • 2) ускорением тока крови в сосудах воспаленной ткани;
  • 3) повышением кровяного давления в капиллярах и венулах.

Как видно из табл. 17, сокращение артериол вызывается главным образом нервнорефлекторным путем, а при воспалении - путем аксон-рефлекса. Сокращение прекапилляров и капилляров регулируется гуморальными факторами - медиаторами воспаления.

Расширенные артериолы вокруг воспаленного очага хорошо заметны на коже в виде красной каймы, окружающей очаг воспаления (например, воспаление волосяного мешочка на коже - фурункул).

По мере нарастания воспалительного процесса по венозной системе затрудняется отток крови и артериальная гиперемия постепенно переходит в венозную. Существует несколько факторов, способствующих переходу артериальной гиперемии в венозную в ходе развития воспаления. Факторы эти следующие.

Внутрисосудистые факторы :

  • а) сгущение крови вследствие перехода ее жидкой части в воспаленную ткань (экссудация;)
  • б) набухание форменных элементов и стенки сосуда в кислой среде;
  • в) пристеночное стояние лейкоцитов;
  • г) увеличение свертываемости крови в воспаленной ткани вследствие повреждения сосудистых стенок, кровяных пластинок и различных клеточных элементов.

Повреждение указанных клеток вызывает освобождение и активацию многих факторов свертывающей системы крови (факторы I, II, III, V, VII, X, XII и др.). Ускорение свертывания крови в сосудах воспаленной ткани способствует тромбообразованию и дальнейшему затруднению оттока крови по венозной системе. Активация свертывающих кровь процессов в воспаленной ткани вызывает также затруднение оттока лимфы из очага воспаления вследствие закупорки лимфатических сосудов массами выпавшего фибрина.

Внесосудистые факторы :

  • а) выхождение жидкой части крови в воспаленную ткань (экссудация);
  • б) выхождение форменных элементов крови (эмиграция).

Это создает условия для сдавления стенок вен и лимфатических сосудов и также способствует затруднению оттока крови из воспаленной ткани по венам и лимфатическим сосудам.

Расширение венул в воспаленной ткани - сложный процесс. Он возникает частично, как и расширение капилляров, под влиянием медиаторов воспаления (гистамин, брадикинин). Кроме того, большое значение в механизме расширения мелких и мельчайших вен при воспалении имеет разрушение (деструкция) мелких и мельчайших (эластических, коллагеновых) соединительнотканных волокон и волоконец, удерживающих в здоровой ткани стенки вен и не допускающих их растяжения. Система соединительнотканных волокон удерживается в здоровой ткани специальными ультраструктурными укрепляющими образованиями, называемыми десмосомами. Они стали доступны наблюдению только с помощью электронного микроскопа. Повреждение ткани при воспалении разрушает (расплавляет) этот соединительнотканный скелет вокруг. мельчайших вен и они растягиваются током крови. На значение деструкции соединительнотканного скелета вокруг вен в механизме- их расширения при воспалении указывал еще В. В. Воронин (1902).

Стадия венозной гиперемии при воспалении сопровождается нарастающим замедлением тока крови в сосудах воспаленной ткани вплоть до стаза. Перед остановкой кровообращения в сосудах воспаленной ткани возникают своеобразные, синхронные с ритмом сердечных сокращений изменения направления токов крови. Они называются маятникообразными движениями крови: в момент систолы кровь движется в капиллярах воспаленной ткани в обычном направлении - от артерии к венам, а в момент диастолы направление крови становится обратным - от вен к артериям. Механизм маятникообразных движений крови в воспаленной ткани состоит в том, что во время систолы пульсовая волна проскакивает через расширенные артериолы и создает картину, известную под названием капиллярного пульса. В момент диастолы кровь встречает препятствия к оттоку по венозной системе и отливает обратно вследствие падения кровяного давления в капиллярах и артериолах во время диастолы.

От маятникообразных движений крови в воспаленной ткани следует отличать передвижения крови из одной сосудистой территории в другую под влиянием прорыва тромбов, открытия или закрытия просвета капилляров вследствие их сдавления, регионарного расширения, закупорки агломерированными форменными элементами и других факторов перераспределения крови внутри сосудисто-капиллярной сети воспаленной ткани.

Эти перемещения масс крови из одной сосудистой территории в другую в очаге воспаления чаще возникают в стадий венозной гиперемии и наблюдаются в виде потоков крови по капиллярам, не синхронных с сердечными сокращениями, как при маятникообразных движениях.

Медиаторы воспаления

Расширение капилляров и венул при воспалении возникает вследствие воздействия на них различных продуктов повреждения воспаленной ткани. Они называются медиаторами воспаления. Среди них важнейшими являются: гистамин, серотонин, активные полипептиды (кинины). К последним относятся брадикинин й другие полипептиды. Брадикинин образуется в крови из сывороточного альфа-2-глобулина под влиянием фермента калликреина, активированного фактором Хагемана (плазматический фактор XII свертывания крови). Процесс этот заключается в том, что из альфа-глобулина сначала образуется полипептид из 10 аминокислот, называемый каллидином. После отщепления от него под влиянием аминопептидазы аминокислоты лизина образуется брадикинин.

Источником образования гистамина и серотонина в воспаленной ткани являются гранулы тучных клеток. При повреждении гранулы набухают и выходят из клеток в окружающую среду.

Воспалительный отек

Вокруг очага воспаления нередко развивается отек; между эндотелиальными клетками образуются просветы, куда входят вода и белки.

Примером воспалительного отека является отек мягких тканей лица при воспалении тканей зубной лунки и пульпы зуба (флюс).

В механизме воспалительного отека важную роль играет увеличение проницаемости кровеносных капилляров под влиянием гистамина, брадикинина и других биологически активных веществ.

По имеющимся данным, это влияние на проницаемость реализуется при участии макроэргических соединений (АТФ). Так, выключение с помощью цианидов тканевого дыхания, в ходе которого синтезируется АТФ, ослабляет действие медиаторов проницаемости.

Большую роль в механизме воспалительного отека играет затруднение оттока крови и лимфы из очага воспаленной ткани. Задержка оттока крови и лимфы вызывает выход плазмы крови и лимфы в ткань и развитие отека.

Воспалительный отек имеет некоторое защитное значение. Белки отечной жидкости связывают токсические вещества воспаленной ткани, нейтрализуют токсические продукты распада тканей при воспалении. Это задерживает поступление указанных выше веществ из очага воспаления в общую циркуляцию и предупреждает распространение их по организму.

Экссудация и экссудаты

Выход жидкой части крови в воспаленную ткань называется экссудацией, а вышедшая в ткань жидкость - экссудатом. Увеличение объема воспаленной ткани вследствие выхода в нее плазмы крови и лейкоцитов называют «воспалительным отеком», или «воспалительной опухолью». Экссудаты представляют собой патологические жидкости воспалительного происхождения, нередко инфицированные различными микробами. Эти жидкости могут быть прозрачными, опалесцирующими, окрашенными кровью. Гнойные экссудаты часто имеют желто-зеленую окраску. В зависимости от вида экссудата в нем содержится большее или меньшее количество клеток - лейкоцитов, эритроцитов, эндотелиальных клеток и различных продуктов их повреждения (рис. 23).

Экссудаты следует отличать от отечной и водяночной жидкостей (транссудаты). Ближе всего к транссудату серозный экссудат, однако и он отличается от транссудата по удельному весу, белковому, клеточному составу и рН (табл. 18).

Выход жидкой части крови в воспаленную ткань, или экссудация, представляет собой сложный процесс. Процесс этот определяется прежде всего увеличением кровяного (фильтрационного) давления в венозной части капилляров воспаленной ткани.

Вторым фактором, обусловливающим образование экссудата, является повышение проницаемости капиллярной стенки. Электронномикроскопические исследования показали, что фильтрация воды и растворенных в ней белков плазмы крови через клетки эндотелия происходит через мельчайшие ходы (поры) размером до 25 А. Они возникают и исчезают в зависимости от изменений фильтрационного давления и различных «факторов проницаемости»: α 1 -, α 2 -глобулинов, гистамина, брадикинина и др. Увеличение фильтрационного гидростатического кровяного давления в капиллярах и венулах воспаленной ткани вызывает также расширение межэндотелиальных щелей, размеры которых составляют от 80 до 100 А (рис. 24).

Проницаемость капилляров при воспалении, по мнению некоторых исследователей, увеличивается также вследствие округления эндотелиальных клеток и растягивания межклеточных щелей.

Кроме фильтрации белков плазмы через ультрамикроскопические каналы, экссудация совершается также с помощью активных процессов захватывания и проведения через эндотелиальную стенку мельчайших капель плазмы крови. Процесс этот носит название везикуляции, ультрапиноцитоза, или цитопемпсиса (от греч. pempsis - проведение). В мельчайших пузырьках - везикулах протоплазмы эндотелиальной клетки находятся ферменты (5-нуклеотидаза и др.), что свидетельствует о наличии активного транспортного механизма плазмы крови в воспаленной ткани. Экссудацию с этой точки зрения можно рассматривать как своеобразный микросекреторный процесс. Различные повреждающие агенты, например бактериальные токсины, в зависимости от их природы и концентрации влияют на экссудацию. В зависимости от характера этого влияния в воспаленную ткань поступают белки плазмы крови (фибриноген, глобулины, альбумины) в различных комбинациях и количествах. Отсюда белковый состав различных видов экссудата существенно отличается (см. «Виды экссудатов»).

Старое представление о том, что состав белков экссудата определяется степенью повреждения (разрыхления) сосудистой стенки факторами, вызывающими воспаление, оказалось неверным. Действительно, в фибринозном экссудате, например, содержится много фибриногена и мало глобулинов и альбуминов, хотя известно, что молекула фибриногена значительно больше молекулы альбумина, и если рассматривать эндотелиальную стенку как простой фильтр, то прохождение фибриногена должно было бы гарантировать прохождение белков с меньшей величиной молекулы - глобулинов и альбуминов.

Некоторое значение в механизме образования белкового состава экссудатов имеют также процессы резорбции белков, вышедших в воспаленную ткань белков из кровеносных сосудов. Так, относительно большая резорбция альбуминов в лимфатические сосуды может способствовать увеличению содержания в экссудате глобулинов. Эти механизмы не имеют существенного значения, так как лимфатические сосуды в воспаленной ткани уже в ранних стадиях развития воспаления блокируются осадками выпавшего фибрина, глобулинов, конгломератами лимфоцитов и пр.

Наконец, третьим фактором экссудация является увеличение осмотического и онкотического давления в очаге воспаления, создающее диффузионные и осмотические токи жидкости в воспаленную ткань.

Выход лейкоцитов в воспаленную ткань (эмиграция лейкоцитов)

Выход лейкоцитов в воспаленную ткань начинается в стадии активной гиперемии и достигает максимума в стадии пассивной гиперемии и стаза. Известно, что с наружной стороны эндотелиальная клетка граничит с непрерывной базальной мембраной толщиной 400 - 600 А. Она состоит из волокон, содержащих фибрин в различных стадиях полимеризации. В условиях - нормального капиллярного кровообращения поверхность эндотелия, по современным данным (Копли, 1964), покрыта тончайшей пленкой «цемент-фибрина», к которой примыкает неподвижный слой плазмы, а с ним уже граничит подвижный слой плазмы. «Цемент-фибрин» состоит из:

  • 1) фибрина,
  • 2) фибрината-кальция,
  • 3) продуктов фибринолиза.

Различают три периода выхода лейкоцитов в воспаленную ткань:

  • 1) краевое стояние лейкоцитов у внутренней поверхности эндотелия капилляров воспаленной ткани;
  • 2) выход лейкоцитов через эндотелиальную стенку;
  • 3) движение лейкоцитов в воспалённой ткани.

Процесс краевого стояния длится от нескольких минут до получаса и больше. Выход лейкоцита через эндотелиальную клетку происходит также в течение нескольких минут. Движение лейкоцитов в воспаленной ткани продолжается много часов и суток.

Краевое стояние, как показывает название, заключается в том, что нейтрофильные лейкоциты располагаются у внутреннего края эндотелиальной стенки (рис. 25). При нормальном кровообращении они не соприкасаются с пленкой фибрина, покрывающей эндотелиальные клетки изнутри.

При повреждении капилляров в воспаленной ткани в их просвете появляется клейкое вещество в виде нежелатинированного фибрина. Нити этого фибрина могут перекидываться через просвет капилляра от одной его стенки к другой.

При замедлении кровообращения в капиллярах воспаленной ткани лейкоциты соприкасаются с фибринной пленкой и удерживаются с нитями некоторое время. Первые секунды соприкосновения лейкоцита с фибринной пленкой еще позволяют ему как бы перекатываться по этой поверхности. Следующим фактором удержания лейкоцитов у внутренней поверхности эндотелиальной стенки, по-видимому, являются электростатические силы. Поверхностный заряд (ς-потенциал) лейкоцитов и эндотелиальной клетки, имеет отрицательный знак. Однако в ходе эмиграции лейкоцит теряет свой отрицательный заряд - как бы разряжается, по-видимому за счет действия на него ионов кальция и других положительных ионов. В механизме. прилипания лейкоцитов к эндотелиальной стенке, возможно, участвуют также процессы прямой химической связи через ионы Са. Эти ионы вступают в соединение с карбоксильными группами поверхности лейкоцита и эндотелиальной клетки и образуют так называемые кальциевые мостики.

Находясь у внутренней поверхности эндотелиальной стенки, нейтрофильный лейкоцит выпускает тонкие плазматические отростки, которые протискиваются в межэндотелиальные щели, пробуравливают базальную мембрану капилляра я выходят за пределы кровеносного сосуда в воспаленную ткань. Факторами, стимулирующими передвижение лейкоцита в воспаленную ткань, являются различные вещества, обладающие положительным химиотаксисом: полипептиды, глобулины, бактериальные эндотоксины, соли и пр. Впервые на роль положительного химиотаксиса в механизме эмиграции указал И. И. Мечников.

Следует заметить, что прохождению лейкоцита через эндотелиальные щели в значительной степени содействуют токи жидкости экссудата, которые также частично проходят в этом месте.

Вслед за нейтрофилами в воспаленную ткань выходят моноциты и лимфоциты. Эту последовательность эмиграции различных видов лейкоцитов в воспаленную ткань описал И. И. Мечников; ее называют законом эмиграции лейкоцитов Мечникова. Более поздний выход моно-нуклеарных клеток объясняли их меньшей чувствительностью к химиотаксическим раздражениям. В настоящее время электронномикроскопические исследования показали, что механизм эмиграции моно-нуклеаров отличается от такового у нейтрофилов.

Мононуклеары внедряются в тело эндотелиальной клетки. Вокруг мононуклеаров образуется большая вакуоль; находясь в ней, они проходят через протоплазму эндотелия и выходят по другую его сторону, разрывая базальную мембрану (рис. 26). Процесс этот напоминает своеобразный фагоцитоз, в котором большую активность проявляет поглощаемый объект. В отношении некоторых подвижных микробов, этот процесс был известен еще И. И. Мечникову. Он подробно изучался В. К. Высоковичем и многими другими.

Процесс прохождения мононуклеарных клеток через эндотелий более медленный, чем прохождение нейтрофилов через щели между эндотелиальными клетками. Поэтому они появляются в воспаленной ткани позже и выражают собой как бы второй этап, или вторую очередь лейкоцитов, выходящих в воспаленную ткань (см. рис. 23).

Виды экссудатов

В зависимости от причин, вызывающих воспаление, и особенностей развития воспалительного процесса различают следующие виды экссудатов:

  • 1) серозный,
  • 2) фибринозный,
  • 3) гнойный,
  • 4) геморрагический.

Соответственно наблюдается серозное, фиброзное, гнойное и геморрагическое воспаление. Встречаются и комбинированные виды воспаления: серо-фибринозное, фибринозно-гнойное, гнойно-геморрагическое. Раньше выделяли еще гнилостный, или ихорозный, экссудат. В настоящее время известно, что гнилостным экссудатом может стать любой экссудат после его заражения гнилостными микробами. Поэтому выделение такого экссудата в самостоятельную рубрику вряд ли целесообразно. Экссудаты, содержащие большое количество жировых капелек (хилус), называются хилезными, или хилоидными. Следует заметить, что поступление жировых капелек возможно в экссудат любого указанного выше типа. Оно может быть вызвано локализацией воспалительного процесса в местах скопления крупных лимфатических сосудов в брюшной полости и другими побочными влияниями. Поэтому выделять хилезный тип экссудата как самостоятельный также вряд ли целесообразно. Примером серозного экссудата при воспалении является содержимое пузыря от ожога на коже (ожог II степени). Примером фибринозного экссудата или воспаления служат фибринозные налеты в зеве или гортани при дифтерии. Фибринозный экссудат образуется в толстом кишечнике при дизентерии, в альвеолах легких при крупозном воспалении.

Особенностью химического состава фибринозного экссудата является выход фибриногена и выпадение его в виде фибрина в воспаленной ткани. В дальнейшем выпавший фибрин растворяется за счет активации фибринолитических процессов. Источниками фибринолизина (плазмина) служат как плазма крови, так и сама воспаленная ткань. Увеличение фибринолитической активности плазмы крови в период фибринолизиса при крупозной пневмонии, например, легко видеть, определяя эту активность в экссудате искусственного волдыря, созданного на коже больного. Таким образом, процесс развития фибринозного экссудата в легком как бы отражается в любом другом месте организма больного, где возникает в той или иной форме воспалительный процесс.

Геморрагический экссудат образуется при бурно развивающемся воспалении с выраженным повреждением сосудистой стенки, когда в воспаленную ткань выходят - эритроциты. Геморрагический экссудат наблюдается в оспенных пустулах при так, называемой черной оспе. Он возникает при сибиреязвенном карбункуле, при аллергических воспалениях (феномен Артюса) и других остро развивающихся и бурно протекающих воспалительных процессах.

Гнойный экссудат и гнойное воспаление вызываются гноеродными микробами (стрепто-стафилококками и другими патогенными микробами).

В ходе развития гнойного воспаления гнойный экссудат поступает в воспаленную ткань и лейкоциты пропитывают, инфильтрируют ее, располагаясь в большом количестве вокруг кровеносных сосудов и между собственными клетками воспаленных тканей. Воспаленная ткань в это время обычно плотна на ощупь. Клиницисты определяют эту стадию развития гнойного воспаления как стадию гнойной инфильтрации.

Источником ферментов, вызывающих разрушение (расплавление) воспаленной ткани, являются лейкоциты и клетки, поврежденные в ходе воспалительного процесса. Особенно богаты гидролитическими ферментами зернистые лейкоциты (нейтрофилы). Гранулы нейтрофилов содержат лизосомы, в которых имеются протеазы, катепсин, химотрипсин, щелочная фосфатаза и другие ферменты. При разрушении лейкоцитов, их гранул и лизосом ферменты выходят в ткань и вызывают разрушение ее белковых, белково-липоидных и других составных частей.

Под влиянием ферментов воспаленная ткань становится мягкой, и клиницисты определяют эту стадию ка» стадию гнойного расплавления, или гнойного размягчения. Типичным и хорошо заметным выражением этих стадий развития гнойного воспаления является воспаление околоволосяного мешочка кожи (фурункул) или слияние многих фурункулов в один воспалительный очаг - карбункул и острое разлитое гнойное воспаление; подкожной клетчатки - флегмона. Гнойное воспаление не считается завершенным, «созревшим», пока не произойдет гнойное расплавление ткани. В результате гнойного расплавления тканей образуется продукт, этого расплавления - гной .

Гной обычно представляет собой густую сливкообразную жидкость желто-зеленого цвета, сладковатого вкуса, имеющую специфический запах. При центрифугирований гной разделяется на две части:

  • 1) осадок, состоящий из клеточных элементов,
  • 2) жидкую часть - гнойную сыворотку.

При стоянии гнойная сыворотка иногда свертывается.

Клетки гноя называют гнойными тельцами. Они представляют собой лейкоциты крови (нейтрофилы, лимфоциты, моноциты) в различных стадиях повреждения и распада. Повреждение протоплазмы гнойных телец заметно в виде появления в них большого количества вакуолей, нарушения контуров протоплазмы и стирания границ между гнойным тельцем и окружающей его средой. При специальных окрасках в гнойных тельцах обнаруживается большое количество гликогена и капелек жира. Появление свободного гликогена и жира в гнойных тельцах является следствием нарушения комплексных полисахаридных и белково-липоидных соединений в протоплазме лейкоцитов. Ядра гнойных телец уплотняются (пикноз) и распадаются на части (кариорексис). Наблюдаются также явления разбухания и постепенного растворения ядра или его частей в гнойном тельце (кариолизис). Распад ядер гнойных телец вызывает значительное увеличение в гное количества нуклеопротеидов и нуклеиновых кислот.



Гоппезейлер определил следующий состав гнойных телец сухого вещества (в процентах): нуклеопротеиды - 34, белки - 14, жиры и лецитин - 15, холестерин - 7, церебрин - 5, экстрактивные вещества - 4, соли - 21, из них NaCl - 4,3, Са 3 (РО 4) 2 - 2,2.

Гнойная сыворотка не отличается существенно по составу от плазмы крови (табл. 19).

Содержание сахара в экссудатах вообще и в гнойном экссудате в частности обычно ниже, чем в крови (50-60 мг%), вследствие интенсивных процессов глюколиза. Соответственно в гнойном экссудате значительно больше молочной кислоты (90-120 мг% и выше). Интенсивные протеолитические процессы в гнойном очаге вызывают увеличение содержания полипептидов и аминокислот.

Восстановительные процессы в воспаленной ткани

Роль соединительнотканных клеток . В зависимости от вида воспаления ткань всегда в большей или меньшей степени разрушается. Это разрушение достигает наибольших размеров при гнойном воспалении. После того как гнойник прорывается или вскрывается хирургическим путем, из него вытекает или удаляется гной, а на месте бывшего воспаления остается полость. В дальнейшем эта полость, или дефект ткани; вызванный воспалением, постепенно восполняется за счет размножения местных соединительнотканных клеток - гистиоцитов и фибробластов. Гистиоциты (макрофаги по И. И. Мечникову), а также моноциты крови дольше сохраняются в очаге воспаления, чем нейтрофилы и другие гранулоциты. Более того, продукты распада в воспаленной ткани, вызывающие гибель гранулоцитов, оказывают стимулирующее влияние на фагоцитарную активность макрофагов. Макрофаги поглощают и переваривают продукты распада в воспаленной ткани, оставшиеся после истечения или удаления гноя. Они очищают воспаленную ткань от этих продуктов распада путем внутриклеточного пищеварения. Одновременно среда воспаленной ткани оказывает стимулирующее влияние на размножение этих клеток и метаплазию их в фибробласты и фиброцисты. Они образуют таким путем новую, молодую, богатую кровеносными сосудами грануляционную ткань, которая постепенно превращается в волокнистую ткань, называемую рубцом (рис. 27).

Важно отметить, что разрушение, вызванное воспалением в различных органах и тканях, например в мозгу, миокарде, никогда не приводит к восстановлению дифференцированных паренхиматозных клеток воспаленного органа. На месте бывшего ранее гнойника образуется соединительнотканный рубец. Это часто приводит ко многим вторичным осложнениям, связанным с постепенным рубцовым стягиванием, к «спайкам», деформирующим нормальную структуру органа и нарушающим его функцию. Хорошо известно вредоносное влияние рубцового спаечного процесса после воспаления в брюшине, после ранения нервных стволов, ранения или воспаления сухожилий, суставов и многих других органов.

Общая характеристика воспаления

Воспаление - защитно-приспособительная реакция целостного организма на действие патогенного раздражителя, проявляющаяся развитием на месте повреждения ткани или органа изменений кровообращения и повышением сосудистой проницаемости в сочетании с дистрофией тканей и пролиферацией клеток. Воспаление является типовым патологическим процессом, направленным на устранение патогенного раздражителя и восстановление поврежденных тканей.

Известный русский ученый И.И. Мечников в конце XIXвека впервые показал, что воспаление присуще не только человеку, но и низшим животным, даже одноклеточным, хотя и в примитивной форме. У высших животных и человека защитная роль воспаления проявляется:

а) в локализации и отграничении воспалительного очага от здоровых тканей;

б) фиксации на месте, в очаге воспаления патогенного фактора и его уничтожении; в) удалении продуктов распада и восстановлении целостности тканей; г) выработке в процессе воспаления иммунитета.

Вместе с тем еще И.И. Мечников считал, что эта защитная реакция организма относительна и несовершенна, так как воспаление составляет основу многих болезней, нередко заканчивающихся смертью больного. Поэтому необходимо знать закономерности развития воспаления, чтобы активно вмешиваться в его течение и устранять угрозу смерти от этого процесса.

Для обозначения воспаления какого-либо органа или ткани к корню их латинского названия добавляют окончание "ит": например, воспаление почек - нефрит, печени - гепатит, мочевого пузыря - цистит, плевры - плеврит и. т.д. Наряду с этим в медицине сохранились старые названия воспаления некоторых органов: пневмония - воспаление легких, панариций - воспаление ногтевого ложа пальца, ангина - воспаление зева и некоторые другие.

2 Причины и условия возникновения воспаления

Возникновение, течение и исход воспаления во многом зависят от реактивности организма, которая определяется возрастом, полом, конституциональными особенностями, состоянием физиологических систем, в первую очередь иммунной, эндокринной и нервной, наличием сопутствующих заболеваний. Немаловажное значение в развитии и исходе воспаления имеет его локализация. Например, крайне опасны для жизни абсцесс мозга, воспаление гортани при дифтерии.

По выраженности местных и общих изменений воспаление разделяют на нормергическое, когда ответная реакция организма соответствует силе и характеру раздражителя; гиперергическое, при котором ответ организма на раздражение значительно интенсивнее, чем действие раздражителя, и гипергическое, когда воспалительные изменения выражены слабо или совсем не выражены. Воспаление может иметь ограниченный характер, но может распространяться на целый орган или даже систему, например систеиу соединительной ткани.

3 Стадии и механизмы воспаления

Характерным для воспаления, отличающим его от всех других патологических процессов, является наличие трех последовательных стадий развития:

1) альтерации,

2) экссудации и 3) пролиферации клеток. Эти три стадии обязательно присутствуют в зоне любого воспаления.

Альтерация - повреждение ткани - является пусковым механизмом развития воспалительного процесса. Она приводит к высвобождению особого класса биологически активных веществ, называемых медиаторами воспаления. В целом все изменения, возникающие в очаге воспаления под влиянием этих веществ, направлены на развитие второй стадии воспалительного процесса - экссудации. Медиаторы воспаления изменяют метаболизм, физико-химические свойства и функции тканей, реологические свойства крови и функции форменных элементов. К медиаторам воспаления относятся биогенные амины - гистамин и серотонин. Гистамин выделяется лаброцитами в ответ на повреждение ткани. Он вызывает боль, расширение микрососудов и повышение их проницаемости, активирует фагоцитоз, усиливает высвобождение других медиаторов. Серотонин высвобождается из тромбоцитов в крови и изменяет микроциркуляцию в очаге воспаления. Лимфоциты выделяют медиаторы, называемые лимфокинами, которые активитуют важнейшие клетки иммунной системы - Т-лимфоциты.

Полипептиды плазмы крови - кинины, в том числе калликреины и брадикинин, вызывают боль, расширение микрососудов и повышение проницаемости их стенок, активируют фагоцитоз.

К медиаторам воспаления относятся и некоторые простагландины, вызывающие те же эффекты, что и кинины, регулируя при этом интенсивность воспалительной реакции.

воспаление защитный патогенный

Перестройка обмена веществ в зоне альтерации приводит к изменению физико-химических свойств тканей и развитию в них ацидоза. Ацидоз способствует повышению проницаемости сосудов и мембран лизосом, распаду белков и диссоциации солей, вызывая тем самым повышение онкотического и осмотического давления в поврежденных тканях. Это в свою очередь увеличивает выход жидкости из сосудов, обусловливая развитие экссудации, воспалительного отека и инфильтрации ткани в зоне воспаления.

Экссудация - выход, или пропотевание, из сосудов в ткань жидкой части крови с находящимися в ней веществами, а также клеток крови. Экссудация наступает очень быстро вслед за альтерацией и обеспечивается в первую очередь реакцией микроциркуляторного русла в очаге воспаления. Первой реакцией сосудов микроциркуляции и регионарного кровообращения в ответ на действие медиаторов воспаления, главным образом гистамина, являются спазм артериол и уменьшение притока артериальной крови. В результате возникает ишемия ткани в зоне воспаления, связанная с увеличением симпатических влияний. Эта реакция сосудов кратковременна. Замедление скорости кровотока и уменьшение объема протекающей крови приводит к нарушению обмена веществ в тканях и ацидозу. Спазм артериол сменяется их расширением, увеличением скорости кровотока, объема протекающей крови и повышением гидродинамического давления, т.е. появлением артериальной гиперемии. Механизм ее развития весьма сложен и связан с ослаблением симпатических и увеличением парасимпатических влияний, а также с действием медиаторов воспаления. Артериальная гиперемия способствует повышению обмена веществ в очаге воспаления, увеличивает приток к нему лейкоцитов и антител, способствует активации лимфатической системы, которая уносит продукты распада тканей. Гиперемия сосудов обусловливает повышение температуры и покраснение участка воспаления.

Артериальная гиперемия по мере развития воспаления сменяется венозной гиперемией. Давление крови в венулах и посткапиллярах повышается, скорость кровотока замедляется, объем протекающей крови снижается, венулы становятся извитыми, в них появляются толчкообразные движения крови. В развитии венозной гиперемии имеет значение потеря тонуса стенками венул вследствие нарушения обмена веществ и ацидоза тканей в очаге воспаления, тромбирования венул, сдавления их отечной жидкостью. Замедление скорости кровотока при венозной гиперемии способствует движению лейкоцитов из центра кровотока к его периферии и прилипанию их к стенкам сосудов. Это явление называется краевое стояние лейкоцитов, оно предшествует их выходу из сосудов и переходу в ткани. Венозная гиперемия завершается остановкой крови, т.е. возникновением стаза, который проявляется сначала в венулах, а позднее становится истинным, капиллярным. Лимфатические сосуды переполняются лимфой, лимфоток замедляется, а затем прекращается, так как наступает тромбоз лимфатических сосудов. Таким образом, очаг воспаления изолируется от неповрежденных тканей. При этом кровь к нему продолжает поступать, а отток ее и лимфы резко снижен, что препятствует распространению повреждающих агентов, в том числе токсинов, по организму.

Экссудация начинается в период артериальной гиперемии и достигает максимума при венозной гиперемии. Усиленный выход жидкой части крови и растворенных в ней веществ из сосудов в ткань обусловлен несколькими факторами. Ведущее значение в развитии экссудации имеет повышение проницаемости стенок микрососудов под влиянием медиаторов воспаления, метаболитов (молочная кислота, продукты распада АТФ), лизосомных ферментов, нарушения баланса ионов К и Са, гипоксии и ацидоза. Выход жидкости обусловлен также повышением гидростатического давления в микрососудах, гиперонкией и гиперосмией тканей. Морфологически повышение сосудистой проницаемости проявляется в усилении пиноцитоза в эндотелии сосудов, набухании базальных мембран. По мере увеличения сосудистой проницаемости из капилляров в очаг воспаления начинают выходить и форменные элементы крови.

Накапливающаяся в очаге воспаления жидкость носит название экссудат. По составу экссудат существенно отличается от транссудата - скопления жидкости при отеках. В экссудате значительно выше содержание белка (3-5%), причем экссудат содержит не только альбумины, как транссудат, но и белки с высокой молекулярной массой - глобулины и фибриноген. В экссудате в отличие от транссудата всегда имеются форменные элементы крови - лейкоциты (нейтрофилы, лимфоциты, моноциты), а нередко и эритроциты, которые, скапливаясь в очаге воспаления, образуют воспалительный инфильтрат. Экссудация, т.е. ток жидкости из сосудов в ткань по направлению к центру очага воспаления, предупреждает распространение патогенного раздражителя, продуктов жизнедеятельности микробов и продуктов распада собственных тканей, способствует поступлению в очаг воспаления лейкоцитов и других форменных элементов крови, антител и биологически активных веществ. В экссудате содержатся активные ферменты, которые высвобождаются из погибших лейкоцитов и лизосом клеток. Их действие направлено на уничтожение микробов, расплавление остатков погибших клеток и тканей. В экссудате находятся активные белки и полипептиды, стимулирующие пролиферацию клеток и восстановление тканей на заключительном этапе воспаления. Вместе с тем экссудат может сдавливать нервные стволы и вызывать боль, нарушать функцию органов и вызывать в них патологические изменения.

Воспаление относится к числу наиболее распространённых типовых патологических процессов. Одновременно оно представляет собой защитно-приспособительную реакцию, эволюционно сформировавшуюся как способ сохранения целого организма ценою повреждения его части.

Несмотря на то, что термин воспаление является одним из наиболее старых и распространённых в медицине, имеется мнение об изъятии его из медицинской терминологии по причине трудности однозначной трактовки этого понятия.

Виды воспаления

По течению различают острые или хронические воспаления. Характер течения определяется реактивностью организма, а также природой повреждающего агента (флогогена), его силой и продолжительностью действия.

Острое воспаление отличается интенсивным течением и сравнительно небольшой (до 4-6 недель) продолжительностью. Оно сопровождается умеренно выраженной альтерацией и деструкцией тканей, экссудацией и пролиферацией в очаге повреждения при нормергическом (без предварительной сенсибилизации) характере воспаления. При гиперергическом (аллергическом) воспалении в очаге его доминируют альтерация и разрушение тканей.

Хроническое воспаление характеризуется более длительным течением - на протяжении многих лет и даже всей жизни пациента (лепра , туберулёз , ревматоидный артрит и др.). Хроническое воспаление может сопровождаться формированием гранулём (узелков), образованием фиброзной капсулы, развитием некроза в центре очага поражения.

В зависимости от характера преобладающих местных изменений различают экссудативное и пролиферативное (продуктивное) воспаление. Экссудативное воспаление характеризуется выраженным нарушением кровообращения и преобладанием процессов экссудации. По характеру экссудата выделяют серозное, гнойное, катаральное, фибринозное и геморрагическое воспаление. Пролиферативное воспаление протекает, как правило, хронически: преобладают явления размножения клеток гематогенного и гистиогенного происхождения.

Клиника воспалительного процесса

Всякое воспаление характеризуется местными и общими симптомами. Местные признаки воспаления включают:

  • Покраснение , которое связано с развитием артериальной гиперемии и артериализацией венозной крови в очаге воспаления.
  • Жар , обусловленный увеличенным притоком крови, активацией метаболизма, разобщением процессов биологического окисления.
  • Припухлость , возникающая вследствие развития экссудации и отёка, набухания тканевых элементов, увеличения суммарного диаметра сосудистого русла в очаге воспаления.
  • Боль , развивающаяся в результате раздражения нервных окончаний различными биологически активными веществами (БАВ) - гистамином, серотонином, брадикинином, сдвига реакции среды в кислую сторону, повышения осмотического давления и механического растяжения или сдавления тканей.
  • Нарушение функции воспалённого органа , связанное с расстройством его нейроэндокринной регуляции, развитием боли, структурными повреждениями.

Общие признаки воспаления :

  1. Изменение количества лейкоцитов в периферической крови - лейкоцитоз (развивается при подавляющем большинстве воспалительных процессов) или значительно реже лейкопения (например, при воспалении вирусного происхождения). Лейкоцитоз обусловлен активацией лейкопоэза и перераспределением лейкоцитов в кровеносном русле. К числу основных причин его развития относятся воздействие некоторых бактериальных токсинов, продуктов тканевого распада, а также ряда медиаторов воспаления, так называемых провоспалительных цитокинов, таких как интерлейкин-1, фактор индукции моноцитопоэза и др.
  2. Лихорадка развивается под влиянием поступающих из очага воспаления пирогенных факторов, таких как липополисахариды, катионные белки, интерлейкин-1. Лихорадка представляет собой адаптивную реакцию организма, способствующую повышению иммунного ответа .
  3. Изменение белкового профиля крови выражается в том, что при остром воспалительном процессе в крови накапливаются синтезируемые печенью белки острой фазы воспаления: С-реактивный белок, церулоплазмин, гаптоглобин, компоненты комплемента . Для хронического течения воспаления характерно увеличение в крови содержания α- и γ-глобулинов.
  4. Изменения ферментного состава крови выражаются в увеличении активности трансаминаз (аланинтрансаминазы при гепатите; аспартаттрансаминазы при миокардите и т.д.), гиалуронидазы, тромбокиназы.
  5. Увеличение скорости оседания эритроцитов (СОЭ) из-за снижения отрицательного заряда эритроцитов, повышения вязкости крови, агломерации эритроцитов, изменения белкового спектра крови, подъёма температуры.
  6. Изменения содержания гормонов в крови заключаются, как правило, в увеличении концентрации катехоламинов, кортикостероидов.
  7. Изменения в иммунной системе и аллергизация организма выражаются в нарастании титра антител, появлении сенсибилизированных лимфоцитов в крови, развитии местных и общих аллергических реакций.

Патогенез воспалительного процесса

Воспалительный процесс носит фазный характер. В его течении выделяют три последовательные стадии, выраженность которых может быть различна:

  • фаза альтерации (повреждения);
  • фаза экссудации (отёка);
  • фаза пролиферации.

Фаза альтерации может быть первичная и вторичная. Первичная альтерация вызывается непосредственным действием повреждающего агента. Для нее характерны ацидоз, снижение макроэргов, нарушение работы насосов, накопление недоокисленных продуктов, изменение pH, повышение проницаемости мембранных структур, набухание клетки.

Вторичная альтерация возникает в динамике воспалительного процесса и обусловлена как воздействием флогогенного агента, так и факторов первичной альтерации (в основном нарушениями кровообращения). Для неё характерно непосредственное воздействие лизосомальных ферментов (гидролазы, фосфолипазы, пептидазы, коллагеназы), их повреждающее влияние. Опосредованное действие оказывают медиаторы, система комплемента, кининовая система.

К основным проявлениям фазы альтерации можно отнести:

1. Нарушение биоэнергетических процессов в тканях . На повреждение отвечают все элементы поврежденной ткани: микроциркуляторные единицы (артериолы, капилляры, венулы), соединительная ткань (волокнистые структуры и клетки), тучные, нервные клетки. Нарушение биоэнергетики в этом комплексе проявляется в снижении потребления кислорода тканью, снижении тканевого дыхания. Повреждение митохондрий клеток является важнейшей предпосылкой для этих нарушений. В тканях преобладает гликолиз . В результате возникает дефицит АТФ, энергии (см. Цикл Кребса). Преобладание гликолиза ведёт к накоплению недоокисленных продуктов (молочной кислоты), возникает ацидоз . Развитие ацидоза, в свою очередь, приводит к нарушению активности ферментных систем, к дезорганизации метаболического процесса.

2. Нарушение транспортных систем в поврежденной ткани . Это связано с повреждением мембран, недостатком АТФ, необходимого для функционирования калий-натриевого насоса. Универсальным признаком повреждения любой ткани является выход калия из клеток, и задержка в клетках натрия. С задержкой натрия в клетках связано ещё одно тяжёлое или летальное повреждение - задержка в клетках воды, то есть внутриклеточный отёк. Выход калия способствует углублению процесса дезорганизации метаболизма , стимулирует процессы образования БАВ - медиаторов.

3. Повреждение мембран лизосом . При этом высвобождаются лизосомальные ферменты, спектр которых чрезвычайно широк. Фактически лизосомальные ферменты могут разрушать любые органические субстраты. Поэтому при их высвобождении наблюдаются летальные повреждения клеток. Кроме этого, лизосомальные ферменты, действуя на субстраты, образуют новые БАВ, токсически действующие на клетки, усиливая воспалительную реакцию - лизосомные флогогенные вещества.

Фаза экссудации включает сосудистые реакции, собственно экссудацию, миграцию и эмиграцию лейкоцитов, а также внесосудистые реакции (хемотаксис и фагоцитоз). Основными медиаторами данной фазы являются гистамин, кинины, серотонин и простагландины.

К сосудистым реакциям, характерным для данной стадии воспаления, можно отнести ишемию, артериальную, венозную и смешанную гиперемию, а также локальное прекращение движения крови по капиллярам (стаз).

Собственно экссудация заключается в выходе жидкости из сосудистого русла из-за увеличения проницаемости сосудистой стенки. Другими словами, происходит повреждение стенки сосудов (альтерация), округление эндотелиальных клеток и появление межклеточных щелей, раздвигание эндотелиальных клеток лейкоцитами, увеличение фильтрационного давления и площади фильтрации. Миграция лейкоцитов заключается в движении лимфоцитов и моноцитов через эндотелиальные клетки, не повреждая их; полиморфноядерные лейкоциты движутся через эндотелиальные щели.

Хемотаксис представляет собой движение клеток из сосуда в очаг воспаления по градиенту хемотаксинов. Фагоцитоз представляет собой активный захват и поглощение живых клеток и неживых частиц особыми клетками - фагоцитами.

Фагоцитоз, в свою очередь, включает следующие стадии:

  1. приближение (случайное и хемотаксис);
  2. контакт, распознавание и прилипание;
  3. поглощение;
  4. переваривание.

Фаза пролиферации - репаративная стадия воспаления или размножение клеток. Главные эффекторы репарации - фибробласты. Механизм данной фазы заключается в стимуляции пролиферации через синтез ДНК и митотическую активность.

В очаге воспаления фибробласты образуют и высвобождают коллаген и фермент коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Также они выделяют фибронектин - белок, участвующий в прикреплении клеток к коллагеновым субстратам, клеточной адгезии и др.

Для воспаления характерно такое свойство как аутохтонность - раз начавшись, воспаление протекает через все стадии до логического завершения, вне зависимости от того, продолжает ли действовать причинный фактор. То есть запускается каскадный механизм, когда предыдущая стадия порождает последующую.

Источники:
1. Воспаление (патофизиологические аспекты) / Ф.И. Висмонт. – Мн.: БГМУ, 2006.
2. Лекции по фармакологии для высшего медицинского и фармацевтического образования / В.М. Брюханов, Я.Ф. Зверев, В.В. Лампатов, А.Ю. Жариков, О.С. Талалаева - Барнаул: изд. Спектр, 2014.
3. Воспаление (Системные изменения в организме при воспалении. Хроническое воспаление) / Т.Е. Потемина, В.А. Ляляев, С.В. Кузнецова. Н. Новгород: Издательство НижГМА, 2010.

При обструктивных воспалительных процессах бронхов , формировании респираторного дистресс-синдрома взрослых отмечается увеличение в несколько раз содержания МБР в очаге воспаления. Наибольшую концентрацию этого соединения можно обнаружить В тканях при анафилаксии и атопических процессах. Имеются сведения о том, что при бронхиальной астме главный основной белок способен повреждать эпи-телиоциты бронхов и тем самым увеличивать выраженность воспалительного процесса. Его содержание в мокроте больных коррелирует со степенью тяжести бронхиальной астмы.

Выделяют плазменные, с молекулярной массой до 97 кДа, и тканевые калликреины , имеющие молекулярную массу 33-36 кДа. Калликреины, воздействуя на а, глобулины плазмы, способствуют образованию брадикинина и каллидина, состоящих соответственно из 9 и 10 аминокислотных остатков. Основная физиологическая роль компонентов калликреин-кининовой системы в норме связана с регуляцией тонуса и проницаемости сосудов микроциркуляторного русла. В условиях острого и хронического воспаления выраженное активирование компонентов этой системы сопровождается увеличением экссудативных процессов в очаге воспаления за счет повышения проницаемости сосудистой стенки и увеличения локального кровотока из-за сосудорасширяющего действия кининов.
Калликреин принимает активное участие в регуляции процессов фагоцитоза, оказывая влияние на хемотаксис нейтрофильных лейкоцитов.

Чрезмерное активирование компонентов калликреин-кининовой системы сопровождается усилением сосудистых воспалительных реакций, увеличением гидростатического давления,во внеклеточной среде, нарастанием отека ткани, ухудшением ее обеспечения кислородом и субстратами биологического окисления. Вследствие этого происходит перерастание компенсаторно-приспособительных реакций в патологические, результатом чего является увеличение зоны вторичной альтерации.

Из других факторов, избыточное активирование которых придает преимущественно патологическую направленность воспалительному процессу , следует отметить систему комплемента, лизосомальные ферменты, катионные белки, лимфокины и монокины.

Система комплемента оказывает влияние не течение всех стадий воспаления за счет как воздействия на альтерацию и экссудацию, так и фагоцитарную активность нейтрофилов и макрофагов, индукцию иммунного ответа. Например, С1 - приводит к усилению экссудативных процессов, СЗа и С5а - способствует увеличению проницаемости сосудистой стенки, активированию процессов высвобождения гистамина из тучных клеток, СЗ и С5 - активируют хемотаксис, С5 и С9 - обладают цитоклитической активностью.

Лизосомальные ферменты в очаге воспаления накапливаются в результате их высвобождения из лизосом нейтрофильных лейкоцитов, макрофагов и клеток поврежденной в ходе альтерации ткани. Выделяясь в значительном количестве в очаге воспаления, ферменты лизосом усиливают вторичную альтерацию, повреждают как внутриклеточные мембраны, так и плазмолемму. Гидролитическое расщепление компонентов базальной мембраны микрососудов и повреждение плазмолеммы эндотелиозцитов сопровождаются выраженным увеличением проницаемости сосудистой стенки и усилением экссудативных процессов.

Катионные белки выделяются в значительном количестве нейтрофильными лейкоцитами. Обладая широким спектром биологической активности, они воздействуют на все стадии воспалительного процесса. К основным их эффектам следует отнести повышение проницаемости сосудистой стенки, усиление экссудации, индукцию высвобождения гистамина тучными клетками.

В очаге воспаления отмечается увеличение концентрации лимфокинов и монокинов, оказывающих влияние на фагоцитоз, хемотаксис и пролиферативные процессы. Избыточное накопление этих веществ сопровождается усилением цитолитических процессов.

В последнее десятилетие появились сообщения о патогенетической роли окиси азота в развитии воспаления. В организме человека и животных окись азота синтезируется из аргинина в результате реакции, катализируемой NO-синтетазой окиси азота (синтетазы окиси азота - СОА).

L-аргинин + НАДФН2 + О2-» NO + L-цитруллин

Высокая активность синтетазы окиси азота определяется в эндотелиоцитах. Ее уровень коррелирует с содержанием в клетке комплекса Са-кальмодулин. Рост содержания в эндотелиоцитах окиси азота происходит при поступлении в цитозоль Са.

Предполагается, что к числу многочисленных свойств этого соединения следует отнести его участие в процессах межклеточного взаимодействия, регуляции сосудистого тонуса и проходимости бронхов.

Положительное действие окиси азота при воспалении, связанное с активированием его высвобождения из L-аргинина, заключается в антимикробных свойствах этого соединения и влиянии на процессы миграции полиморфноядерных лейкоцитов через стенку капилляра. При воспалении создаются условия для чрезмерного образования окиси азота. Ключевым механизмом этого процесса следует считать возрастание в очаге воспаления уровня активности синтетазы окиси азота, которая активируется в присутствии комплекса Са-кальмодулин. Возрастание в цитозоле свободного кальция при воспалении непременно должно сопровождаться ростом активности фермента, катализирующего синтез окиси азота. Чрезмерное накопление окиси азота клетками воспалительного очага приводит к иммунодепрессии, снижению устойчивости цитоплазматических мембран к гипоксическому воздействию. Токсические концентрации этого соединения приводят к необратимым нарушениям микроциркуляции, что негативно влияет на течение воспалительного процесса в целом.

По мере развития воспалительного процесса в его очаге происходит накопление биологически активных веществ, обладающих преимущественно противовоспалительными эффектами. Помимо окиси азота к ним следует отнести простациклин и аденозин.

Простациклин синтезируется эндотелиоцитами и имеет биологические эффекты, сходные с окисью азота. Рост концентрации этого соединения сопровождается снижением аггрегации тромбоцитов и улучшением за счет этого процессов микроциркуляции. В условиях наблюдаемого при воспалении активирования свободно-радикального окисления простациклин обладает протекторными свойствами, защищает цитоплазматические мембраны эндотелиоцитов от деструкции.

Воспаление - это филогенетически защитный патологический процесс, возникающий в ответ на повреждение тканей, включающий в себя характерные альтеративные, микроциркуляторные и пролифера-тивные изменения, направленные в конечном итоге на изоляцию и устранение повреждающего агента, погибших тканей, а также на бо-лее или менее полное восстановление органа. Цельс описал 4 приз-нака воспаления: покраснение (rubor), жар (calor), опухоль (tu-mor), боль (dolor). Гален добавил к ним пятый признак - наруше-ние функции (functio laesa). Кроме перечисленных могут быть еще следующие общие признаки воспаления: лейкоцитоз, лихорадка, из-менение белкового, гормонального и ферментного состава крови, увеличение СОЭ и др.

Динамика воспалительного процесса, независимо от вызывающих его причин, всегда достаточно стандартна. Выделяют 3 компонента воспаления: альтерацию, расстройство микроциркуляции и геморео-логии с экссудацией и эмиграцией лейкоцитов, пролиферацию.

Альтерация (повреждение) - это нарушение структурной и функциональной организации клеток и межклеточного вещества тканей и органов, которое сопровождается нарушением их жизнедеятельности. Принято выделять первичную и вторичную альтерацию. Первичная альтерация возникает в ответ на прямое воздействие фактора, вызывающего воспаление. Реакции первичной альтерации как бы пролонгируют действие пов-реждающего фактора. Сам фактор уже может не контактировать с ор-ганизмом.

Вторичная альтерация возникает под воздействием как фактора, вызывающего воспаление, так и факторов первичной альтерации. Действие повреждающего фактора проявляется прежде всего на клеточных мембранах, в том числе и на лизосомных. Ферменты лизосом реактивны. Они выходят наружу и повреждают все элементы клетки. Таким образом, вторичная альтерация - это прежде всего самоповреждение. В тоже время вторичная альтерация достаточно целесообразный и необходимый компонент воспаления - как защитно-приспособительный процесс. Дополнительное встречное повреждение направлено на скорейшую ло-кализацию этиологического фактора и поврежденной под его воздействием ткани организма. Ценою повреждения достигаются и многие другие важные защитные явления: активация обмена веществ, вовлечение медиа-торов воспаления и клеток, усиление фагоцитоза и др.

Изменение обмена веществ в начале воспаления происходит преимущественно за счет углеводов . Первоначально, за счет акти-вации тканевых ферментов усиливается как окислительное фосфори-лирование углеводов, так и гликолиз. В дальнейшем гликолиз начи-нает преобладать над дыханием. Это происходит потому, что: 1. Усиливается потребление воспаленной тканью кислорода. 2. Наруша-ется кровообращение. В крови уменьшается содержание кислорода. 3. Увеличивается накопление в очаге лейкоцитов, лизосомальных ферментов, которые расщепляют глюкозу преимущественно анаэробным путем. 4. Идет повреждение и снижение числа митохондрий. В тка-нях накапливаются недоокисленные продукты углеводного обмена: молочная и трикарбоновые кислоты.

Нарушение жирового обмена заключается в том, что под дейс-твием ферментов прежде всего лизосомных в очаге острого воспаления идет распад жиров с образованием жирных кислот. В очаге воспаления резко нарушается обмен белков и нуклеиновых кислот. Под действием лизосомных и других ферментов идет распад белков и нуклеиновых кислот до ами-нокислот, полипептидов, нуклеотидов, нуклеозидов (аденозин).

В результате нарушения обмена углеводов, жиров и белков в воспаленой ткани накапливаются кислые продукты обмена и развива-ется метаболический ацидоз . В начале он компенсируется щелочными резервами крови и тканевой жидкости. В дальнейшем при местном истощении щелочных резервов и при затруднении притока свежей крови ацидоз переходит в некомпенсированный. При остром гнойном

воспалении рН может достигать 5,4, а при хроническом - 6,6. Аци-доз создает благоприятные условия для действия некоторых лизо-сомных ферментов, в частности гликозидаз, расщепляющих углевод-ные компоненты соедитительной ткани.

Концентрация водородных ионов повышается тем больше, чем интенсивнее течет воспаление. По направлению от центра к перифе-рии концентрация водородных ионов постепенно снижается.

В кислой среде увеличивается диссоциация солей. В результа-те в очаге воспаления нарастает содержание ионов К, Nа, Са. Это обусловлено также разрушением клеток и освобождением этих солей. В связи со сниженным образованием макроэргов нарушается ка-лий-натриевый баланс в клетке. Калий начинает выходить из кле-ток, натрий наоборот входит в клетку. Возникают гипериония и ди-зиония.

Одновременно нарастает молекулярная концентрация, поскольку в процессе тканевого распада и нарушенного обмена веществ проис-ходит расщепление крупных молекул до множества мелких. Вследс-твие повышения ионной и молекулярной концентрации развивается гиперосмия. К гиперосмии ведет и гиперонкия - повышение концент-рации белков в очаге воспаления. Гиперонкия возникает потому, что: 1) идет выход белка из крови в очаг воспаления, вследствие того, что ацидоз и лизосомные ферменты повышают проницаемость сосудистой стенки для белка; 2) в условиях ацидоза идет расщеп-ление крупнодисперсных белков до мелкодисперсных.

Медиаторы воспаления

Медиаторы /посредники/ воспаления - это комплекс физиологи-чески активных веществ, опосредующих действие факторов, вызываю-щих воспаление и определяющих развитие и исходы воспаления. При воспалении они выделяются в больших количествах и становятся ме-диаторами. Т.к. они способны усиливать или ослаблять проявление воспалительного процесса их называют модуляторами. Медиаторное звено явля-ется важным в патогенезе воспаления. Основными группами медиато-ров воспаления являются: 1. Биогенные амины - гистамин, серото-нин. Гистамин - один из наиболее важных медиаторов, выделяется базофилами и тучными клетками и реализует свое действие через мембранные рецепторы. Высвобождение гистамина одна из первых ре-акций ткани на повреждение. Гистамин вызывает вазодилятацию, повы-шает проницаемость сосудов за счет округления эндотелиальных клеток и ослабления межклеточных контактов, увеличивает продукцию прос-тагландина Е 2, снижает освобождение лизосомальных ферментов, нейтрофилов. У человека появляются кожный зуд, жжение и боль. После освобождения гистамин очень быстро разрушается ферментом гис-таминазой. Поэтому его действие быстро прекращается и включаются другие медиаторы, в частности серотонин. Он содержится в нейро-нах мозга, базофилах, тромбоцитах. В очаге воспаления серотонин в умеренных дозах вызывает расширение артериол, сокращение мио-цитов в стенках венул и венозный застой. Кроме того, он увеличи-вает проницаемость стенки сосудов, усиливает тромбообразование, вызывает чувство боли. Биогенные амины взаимодействуют между со-бой и др. медиаторами воспаления. Напр. 2-й группой медиаторов: плазменные системы /кинины, комплемент, компоненты системы комп-лемента, факторы свертывающей системы крови/.

Наиболее важными кининами являются брадикинин и каллидин. Пусковым моментом активации кининовой системы является активация 12 фактора свертывания крови - фактора Хагемана при повреждении ткани. Этот фактор превращает прекалликреины в калликреины. Пос-ледние действут на кининоген-белок плазмы и из него образуются плазмокинины. Они вызывают расширение артериол и повышают прони-цаемость венул, сокращают гладкую мускулатуру вен, повышают ве-нозное давление. Кинины угнетают эмиграцию нейтрофилов, стимули-руют миграцию лимфоцитов, секрецию лимфакинов, вызывают чувство боли. Комплемент представляет собой сложную плазменную систему, включающую не менее 18 белков. Он обеспечивает лизис чужеродных и собственных измененных клеток. Фрагменты комплемента могут по-вышать сосудистую проницаемость, высвобождать лизосомные гидро-лазы, участвовать в образовании лейкотриенов. Система гемостаза и фибринолиза способствует тромбообразованию и образованию фиб-ринопептидов. Они повышают проницаемость сосудов, стимулируют образование кининов.

3-й группой медиаторов являются продукты арахидоновой кис-лоты - простагландины и лейкотриены. ПГ продуцируются почти все-ми типами ядерных клеток, но преимущественно лейкоцитами. ПГ усиливают или ослабляют действие других медиаторов, тормозят или усиливают агрегацию тромбоцитов, расширяют или суживают сосуды, повышают температуру тела. Лейкотриены образуются в мембранах тромбоцитов, базофилов, эндотелиальных клеток. Они вызывают агрегацию лейкоцитов, спазм микрососудов, повышение проницаемости, брон-хоспазм.

4-я группа медиаторов - кислородные радикалы и гидроперекиси липидов. В митохондриях клеток образуются такие кислородные ради-калы, как перекись водорода, гидроксильный радикал и др. При повреждении митохондрий кислые радикалы освобождаются, взаимо-действуя с липидами мембран, образуя липидные гидроперекиси. Весь комплекс процессов генерации радикалов кислорода и липидных гид-роперекисей носит название "оксидантная система". В очаге воспа-ления свободные радикальные процессы активируются и повреждают мембраны микробных и собственных клеток. Возникает так называе-мый "окислительный взрыв". Он лежит в основе бактерицидной ак-тивности фагоцитов. Кроме того, радикалы повышают проницаемость микрососудов, могут стимулировать пролиферацию.

5-ая группа медиаторов - медиатор полиморфно-ядерных лейкоцитов /ПЯЛ/ моноцитов и лимфоцитов. ПЯЛ выделяют группу высокоактивных медиаторов, которые вызывают различные реакции в очаге воспале-ния, формируя его проявления. Одним из представителей является фак-тор активирующий тромбоциты /ФАТ/. Он повышает проницаемость со-судов, вызывает агрегацию тромбоцитов, эмиграцию лейкоцитов. Кроме того, лейкоциты выделяют такие медиаторы, как простаглан-дины Е 2 , лейкотриены, тромбоксан А 2 (повышает свертываемость крови, суживает коронарные сосуды), простациклин (расширяет со-суды и уменьшает свертываемость крови). Простациклины и лейкот-риены имеют значение в происхождении воспалительной боли. Моно-циты и лимфоциты выделяют монокины и лимфокины. Например, лимфо-кины выделяют фактор, угнетающий макрофаги, макрофагостимулирую-щий фактор. Лимфокины координируют взаимодействие нейтрофагов, микрофагов и лимфоцитов, регулируя воспалительную реакцию в це-лом.

Антимедиаторы воспаления

На всех этапах развития воспаления высвобождаются и начинают действовать вещества, которые предупреждают избыточное накопление медиаторов или прекращают влияние медиаторов. Это прежде всего ферменты: гистаминаза, карбоксипептидаза ингибиторы кинины, эс-теразы ингибиторов фракции комплемента. Важную роль в образовании и доставке антимедиаторов в очаг воспаления играют эозинофилы. Из гуморальных антимедиаторов важную роль играет альфа-1-антитрипсин, образующийся в гепатоцитах. Он является ингибитором протеаз.

Как следует из определения 2-м компонентом воспаления явля-ется нарушение микроциркуляции и гемореологии в очаге воспаления.

Выделяют следующие стадии расстройства кровообращения: 1. Формирование артериальной гиперемии. 2. Стадия венозной гиперемии, которая проходит через смешанную. 3. Далее может наступить стаз крови.

Быстро образующиеся гистамин, кинины, простагландины и др. медиаторы воспаления расширяют артерии, артериолы и обеспечивают формирование артериальной гиперемии. Важная роль в развитии ар-териальной гиперемии и ее поддержании принадлежит изменению чувствительности альфа-адренорецепторов сосудов в условиях аци-доза. В результате происходит снижение реакции сосудов на адре-налин и симпатические влияния, что способствует расширению арте-риол и прекапиллярных сфинктеров. В очаге воспаления в связи с ацидозом, дизионией (повышением концентрации ионов К + в тканевой жидкости) сосудосуживающий эффект прекапиллярных сфинктеров тоже снижа-ется. Все эти факторы приводят к формированию артериальной гипе-ремии. Артериальная гиперемия характеризуется увеличением объем-ной и линейной скорости кровотока, количества функционирующих капилляров. Увеличение притока крови, богатой кислородом спо-собствует усилению окислительно-восстановительных процессов и теплообразования. Поэтому в стадию артериальной гиперемии субъ-ективно и объективно регистрируется повышение температуры в оча-ге воспаления.

При воспалении резко повышается проницаемость сосудов, что способствует выходу в очаг воспаления белков и воды. Прежде всего, выходят альбумины, в связи с чем относительно увеличивается в крови количество глобулинов и фибриогена. Это влечет за собой повышение вязкости и концентрации крови, следствием является за-медление тока крови и образование агрегатов эритроцитов. В резу-льтате скопления жидкости, позже и форменных элементов в ткани сдавливаются лимфатические и кровеносные сосуды, что затрудняет отток крови и лимфы. В сосудах развивается агрегация форменных элементов, склеивание их и формирование сладжей. Для сладжей ха-рактерна агрегация эритроцитов в виде монетных столбиков. При сладже распад оболочек эритроцитов не возникает, поэтому сладжи могут распадаться. Параллельно с этим активируется свертывающая система крови с образованием тромбов и тромбоэмболов. Все эти изменения способствуют нарастанию динамической вязкости крови и ухудшению ее реологических свойств. Также причиной образования микротромбов и кровоизлияний является прямое повреждение стенки сосудов фактором, вызывающим воспаление, активация фактора Хаге-мана, действие медиаторов /лизосомные ферменты, брадикинин, каллидин/. Эритроциты покидают сосуды через межэндотелиальные пространства. Таким образом, к артериальной гиперемии очень быстро присоединяется венозная, проявления которой прогрессивно нарастают. В стадии венозной гиперемии нарушается отток крови из очага воспаления, уменьшается линейная и объемная скорость кро-вотока, нарастает гидростатическое давление, развивается толчко-образное и маятникообразное движение крови.

По мере развития воспаления и венозной гиперемии происходит дальнейшее, прогрессирующее замедление кровотока. Оно обусловле-но: а) чрезмерным увеличением площади поперечного сечения сосу-дистого русла за счет максимального расширения капилляров и вскрытия вен, б) механическим препятствием для оттока крови и лимфы из очага воспаления, прежде всего из-за сдавления венозных и лимфатических сосудов, в) увеличением сопротивления кровотоку, обусловленного шероховатостью внутренней стенки мелких сосудов от прилипших к ней лейкоцитов, а также набуханием эндотелиальных клеток, г) дальнейшим сгущением крови и повышением вязкости ее вследствие усиленного выхода жидкости из сосудов в ткань.

В конечном итоге происходит остановка движения крови - стаз. Стаз первоначально регистрируется в отдельных капиллярах и венулах, в последующем он охватывает все больше сосудов. Позже всего стаз развивается в атериолах. В зависимости от тяжести воспаления стаз может быть кратковременным, сохраняться в тече-нии часов или быть необратимым. Следствием стаза могут быть не-обратимые изменения клеток крови и тканей.

Экссудация

Экссудация - это выход жидкой части крови в очаг воспаления. Она осуществляется 3-мя путями: 1. Через межэндотелиальные щели, размер которых увеличивается за счет сокращения микрофиб-рилл эндотелиальных клеток. 2. Через тело эндотелиальных клеток по специализированным каналам. 3. Микропиноцитозный путь в виде активного проведения мельчайших капель через тело клетки. Уста-новлены две фазы повышения проницаемости сосудистой стенки в очаге воспаления: 1. Мгновенно нарастающая проницаемость сосу-дов, обусловленная действием вазоактивных веществ. 2. Поздняя (замедленная, продолжительная), связанная с действием ПМЯ-лейко-цитов. Гранулы лейкоцитов содержат БАВ, которые освобождаются при дегрануляции и фагоцитозе. Процесс накопления ПМЯ- лейкоци-тов и дегрануляция их процесс длительный. Вот поэтому они и обеспечивают 2-ую фазу повышения проницаемости.

Повышение сосудистой проницаемости обусловлено следующими факторами: 1. Непосредственным действием фактора (животные яды, токсины бактерий и др.). 2. Действием БАВ (гистамин, серотонин, кинины и др.) 3. Ацидозом. Он приводит к разжижению коллоидов и ослаблению межэндотелиальных связей. Повышенная проницаемость со-судов обусловливает выход белков и элементов крови в воспаленный участок. Выход воды и растворенных в ней веществ обусловлен: 1. Увеличением площади фильтрации и диффузии. 2. Повышением кровя-ного давления в капиллярах и венулах. 3. Повышением осмотическо-го давления в воспаленной ткани. 4. Лимфатическим отеком.

Жидкость, выходящая в воспаленную ткань, называется экссу - датом. Он содержит большое количество белка (30-50 г/л), формен-ные элементы крови, клетки поврежденной ткани. Невоспалительный выпот - транссудат, содержит значительно меньше белка, форменных элементов крови, клеток поврежденной ткани. Параллельно с выхо-дом белков и воды при воспалении идет процесс эмиграции лейкоци-тов.

Эмиграция лейкоцитов

Выходу лейкоцитов предшествует пристеночное движение и сто-яние их, наблюдаемое особенно отчетливо в стадию венозной гиперемии. Это явление объясняется снижением отрицательного заряда лейкоцитов, пристеночным микросвертыванием, в результате чего микрофибриллы тормозят движение лейкоцитов и способствуют их пристеночному стоянию. Еще И.И.Мечников отметил, что первыми в очаге воспаления появляются ПМЯ-лейкоциты, затем моноциты и пос-ледними лимфоциты. Лейкоциты эмигрируют двумя путями: ПМЯ-лейко-циты выходят через межэндотелиальные щели, а мононуклеары через тело эндотелиальных клеток. Последний процесс наиболее длителен и это объясняет почему мононуклеары позже появляются в воспален-ном участке. Базальную мембрану элементы крови преодолевают на основе изотермического обратимого уменьшения вязкости коллоидно-го раствора (тиксотропии), т.е. перехода геля в золь при прикос-новении лейкоцита к мембране. Лейкоцит, легко преодолевая золь, оказывается за пределами сосуда, а мембрана снова превращается в гель. В этом процессе участвуют ферменты и прежде всего коллаге-наза.

Определенное влияние на последовательность эмиграции оказы-вает рН очага воспаления. При рН 7,4-7,2 накапливаются ПМЯ-лей-коциты, при рН 7,0-6,8 -мононуклеары, а при рН 6,7 в очаге вос-паления гибнут все лейкоциты с образованием гноя.

Важное значение в эмиграции лейкоцитов принадлежит хемотак-сису. Он формируется с участием комплемента. Применение ингиби-торов комплемента предотвращает повреждение сосудов и выход лей-коцитов. Хемотаксис стимулируется стрептокиназой. Хемотоксины появляются при механическом повреждении ткани, при инфекционном воспалении за счет действия эндотоксинов. Хемотоксины образуются также лимфоцитами и при распаде гамма-глобулинов. Хемотаксис стимулируется продуктами метаболизма тканей, бактерий, вирусов, а также калликреиновой системой. Определенную роль в эмиграции лейкоцитов играют так называемые поверхностно-активные вещества, которые могут понижать поверхностное натяжение. Например: орга-нические кислоты. Они, изменяя поверхностное натяжение лейкоци-та, приводят к тому, что у последнего появляются выпячивания ци-топлазмы и образуется псевдоподия. Постепенно в нее перемещается весь лейкоцит, целиком выходя за пределы сосуда.

Судьба вышедших из сосудов лейкоцитов зависит от той среды в которую они попадают. Если воспаление имеет асептический ха-рактер, то эмигрировавшие лейкоциты быстро погибают в течении

3-5 дней. Если воспаление имеет септический характер, то коли-чество лейкоцитов в очаге воспаления прогрессивно нарастает. На-чинается нагноение. Часть лейкоцитов, расположенных к центру воспалительного очага погибает. Часть проявляет фагоцитарную ак-тивность. Растет активность ферментов: миелопероксидазы, кислых гидролаз, которые уничтожают внеклеточно расположенные бактерии.



© dagexpo.ru, 2024
Стоматологический сайт