Модуль спектральной плотности. Спектральная плотность мощности детерминированного сигнала

21.09.2019

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде s T (t ). Тогда для него можно записать ряд Фурье

где

Подставим выражение для в ряд:

Для того, чтобы перейти к функции s (t ) следует в выражении s T (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине: , амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя, т.к. спектр становится сплошным .

При предельном переходе в случае Т => , имеем:

Таким образом, в пределе получаем

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают ,

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

9. Свойства преобразования Фурье. Свойства линейности, изменения масштаба времени, другие. Теореме о спектре производной. Теорема о спектре интеграла.

10. Дискретное преобразование Фурье. Помехи радиоприёму. Классификация помех.

Дискретное преобразование Фурье может быть получено непосредственно из интегрального преобразования дискретизаций аргументов (t k = kDt, f n = nDf):

S(f) = s(t) exp(-j2pft) dt, S(f n) = Dt s(t k) exp(-j2pf n kDt), (6.1.1)

s(t) = S(f) exp(j2pft) df, s(t k) = Df S(f n) exp(j2pnDft k). (6.1.2)

Напомним, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте - к периодизации функции. Не следует также забывать, что значения (6.1.1) числового ряда S(f n) являются дискретизаций непрерывной функции S"(f) спектра дискретной функции s(t k), равно как и значения (6.1.2) числового ряда s(t k) являются дискретизацией непрерывной функции s"(t), и при восстановлении этих непрерывных функций S"(f) и s"(t) по их дискретным отсчетам соответствие S"(f) = S(f) и s"(t) = s(t) гарантировано только при выполнении теоремы Котельникова-Шеннона.

Для дискретных преобразований s(kDt) Û S(nDf), и функция, и ее спектр дискретны и периодичны, а числовые массивы их представления соответствуют заданию на главных периодах Т = NDt (от 0 до Т или от -Т/2 до Т/2), и 2f N = NDf (от -f N до f N), где N – количество отсчетов, при этом:

Df = 1/T = 1/(NDt), Dt = 1/2f N = 1/(NDf), DtDf = 1/N, N = 2Tf N . (6.1.3)

Соотношения (6.1.3) являются условиями информационной равноценности динамической и частотной форм представления дискретных сигналов. Другими словами: число отсчетов функции и ее спектра должны быть одинаковыми. Но каждый отсчет комплексного спектра представляется двумя вещественными числами и, соответственно, число отсчетов комплексного спектра в 2 раза больше отсчетов функции? Это так. Однако представление спектра в комплексной форме - не более чем удобное математическое представление спектральной функции, реальные отсчеты которой образуются сложением двух сопряженных комплексных отсчетов, а полная информация о спектре функции в комплексной форме заключена только в одной его половине - отсчетах действительной и мнимой части комплексных чисел в частотном интервале от 0 до f N , т.к. информация второй половины диапазона от 0 до -f N является сопряженной с первой половиной и никакой дополнительной информации не несет.

При дискретном представлении сигналов аргумент t k обычно проставляется номерами отсчетов k (по умолчанию Dt = 1, k = 0,1,…N-1), а преобразования Фурье выполняются по аргументу n (номер шага по частоте) на главных периодах. При значениях N, кратных 2:

S(f n) º S n = s k exp(-j2pkn/N), n = -N/2,…,0,…,N/2. (6.1.4)

s(t k) º s k = (1/N) S n exp(j2pkn/N), k = 0,1,…,N-1. (6.1.5)

Главный период спектра в (6.1.4) для циклических частот от -0.5 до 0.5, для угловых частот от -p до p. При нечетном значении N границы главного периода по частоте (значения ±f N) находятся на половину шага по частоте за отсчетами ±(N/2) и, соответственно, верхний предел суммирования в (6.1.5) устанавливается равным N/2.



В вычислительных операциях на ЭВМ для исключения отрицательных частотных аргументов (отрицательных значений номеров n) и использования идентичных алгоритмов прямого и обратного преобразования Фурье главный период спектра обычно принимается в интервале от 0 до 2f N (0 £ n £ N), а суммирование в (6.1.5) производится соответственно от 0 до N-1. При этом следует учитывать, что комплексно сопряженным отсчетам S n * интервала (-N,0) двустороннего спектра в интервале 0-2f N соответствуют отсчеты S N+1- n (т.е. сопряженными отсчетами в интервале 0-2f N являются отсчеты S n и S N+1- n).

Пример: На интервале Т= , N=100, задан дискретный сигнал s(k) = d(k-i) - прямоугольный импульс с единичными значениями на точках k от 3 до 8. Форма сигнала и модуль его спектра в главном частотном диапазоне, вычисленного по формуле S(n) = s(k)×exp(-j2pkn/100) с нумерацией по n от -50 до +50 с шагом по частоте, соответственно, Dw=2p/100, приведены на рис. 6.1.1.

Рис. 6.1.1. Дискретный сигнал и модуль его спектра.

На рис. 6.1.2 приведена огибающая значений другой формы представления главного диапазона спектра. Независимо от формы представления спектр периодичен, в чем нетрудно убедиться, если вычислить значения спектра для большего интервала аргумента n с сохранением того же шага по частоте, как это показано на рис. 6.1.3 для огибающей значений спектра.

Рис. 6.1.2. Модуль спектра. Рис. 6.1.3. Модуль спектра.

На рис. 6.1.4. показано обратное преобразование Фурье для дискретного спектра, выполненное по формуле s"(k) =(1/100) S(n)×exp(j2pkn/100), которое показывает периодизацию исходной функции s(k), но главный период k={0,99} этой функции полностью совпадает с исходным сигналом s(k).

Рис. 6.1.4. Обратное преобразование Фурье.

Преобразования (6.1.4-6.1.5) называют дискретными преобразованиями Фурье (ДПФ). Для ДПФ, в принципе, справедливы все свойства интегральных преобразований Фурье, однако при этом следует учитывать периодичность дискретных функций и спектров. Произведению спектров двух дискретных функций (при выполнении каких-либо операций при обработке сигналов в частотном представлении, как, например, фильтрации сигналов непосредственно в частотной форме) будет соответствовать свертка периодизированных функций во временном представлении (и наоборот). Такая свертка называется циклической (см. раздел 6.4) и ее результаты на концевых участках информационных интервалов могут существенно отличаться от свертки финитных дискретных функций (линейной свертки).

Из выражений ДПФ можно видеть, что для вычисления каждой гармоники нужно N операций комплексного умножения и сложения и соответственно N 2 операций на полное выполнение ДПФ. При больших объемах массивов данных это может приводить к существенным временным затратам. Ускорение вычислений достигается при использовании быстрого преобразования Фурье.

Помехи

Помехами обычно называют посторонние электрические возмущения, накладывающиеся на передаваемый сигнал и затрудняющие его прием. При большой интенсивности помех прием становится практически невозможным.

Классификация помех:

а) помехи от соседних радиопередатчиков (станций);

б) помехи от промышленных установок;

в) атмосферные помехи (грозы, осадки);

г) помехи, обусловленные прохождением электромагнитных волн через слои атмосферы: тропосферу, ионосферу;

д) тепловые и дробовые шумы в элементах радиоцепей, обусловленные тепловым движением электронов.

Математически сигнал на входе приемника можно представить либо в виде суммы передаваемого сигнала и помехи, и тогда помеху называют аддитивной , либо просто шумом , либо в виде произведения передаваемого сигнала и помехи, и тогда такую помеху называют мультипликативной . Эта помеха приводит к значительным изменениям интенсивности сигнала на входе приемника и объясняет такие явления как замирания .

Наличие помех затрудняет прием сигналов при большой интенсивности помех, распознавание сигнала может стать практически невозможным. Способность системы противостоять мешающему воздействию помехи носит название помехоустойчивости .

Внешние естественные активные помехи представляют собой шумы, возникающие в результате радиоизлучения земной поверхности и космических объектов, работы других радиоэлектронных средств. Комплекс мероприятий, направленных на уменьшение влияния взаимных помех РЭС, называется электомагнитной совместимостью. Этот комплекс включает в себя как технические меры совершенствования радиоаппаратуры, выбор формы сигнала и способа его обработки, так и организационные меры: регламентация частоты, разнесение РЭС в пространстве, нормирование уровня внеполосных и побочных излучений и др.

11. Дискретизация непрерывных сигналов. Теорема Котельникова (отсчётов). Понятие частоты Найквиста. Понятие интервала дискретизации.

Пусть интервал разложения сигнала (см. рис. 2.1) стремится к бесконечности. При его увеличении частота = 2п/Т уменьшается до бесконечно малой величины:

Расстояние между спектральными компонентами при этом уменьшается до бесконечно малой величины, а значения превращаются в текущие значения частоты со (см. рис. 2.2). Интервал разложения стремится к бесконечной величине. Это позволяет при вычислении предела ряда Фурье в комплексной форме заменить знак суммы знаком интеграла, основную частоту О)! = 2п/Т - на?/со, а кратную частоту к(о { заменить текущей частотой со:

Интеграл, который записан в скобках выражения (2.13), обозначим

Тогда выражение (2.13) запишется более компактно:

Выражения (2.14) и (2.15) называются соответственно прямым и обратным преобразованиями Фурье. Функция 5(/со) называется

спектральной плотностью. Она является комплексной и имеет размерность [В/Гц], если размерность сигнала и{Р) [В].

Преобразование Фурье (2.14) может быть вычислено на основе общих правил интегрирования, если сигнал удовлетворяет условию абсолютной интегрируемости:

Это условие означает, что преобразование (2.14) существует для тех сигналов, площадь под кривой |м(?)| которых ограничена.

К этому классу не относятся, например, периодические сигналы, которые не удовлетворяют условию абсолютной интегрируемости. Однако это не означает, что для периодических сигналов спектральная плотность не может быть вычислена. Методы вычислений, специально разработанные для этих целей, используют так называемые обобщенные функции. Примером обобщенной функции является дельта-функция. Некоторые свойства дельта-функции приведены в приложении 1.

Преобразуем спектральную плотность сигналов, которые удовлетворяют условию абсолютной интегрируемости. Такие сигналы ограничены во времени.

С учетом формулы Эйлера перепишем выражение (2.14): где

Модуль |5(/со)| называется спектральной плотностью амплитуд сигнала или амплитудно-частотной характеристикой

(АЧХ) спектральной плотности сигнала. Функция ср(со) определяет фазо-частотную характеристику (ФЧХ) спектральной плотности сигнала. АЧХ и ФЧХ спектральной плотности являются непрерывными функциями частоты.

Перейдем к анализу спектральной плотности сигналов, не удовлетворяющих условию абсолютной интегрируемости. Такие сигналы не ограничены во времени и имеют бесконечно большую энергию.

На основе сигнала Ц)(?), удовлетворяющего условию абсолютной интегрируемости, построим периодически повторяющийся сигнал

и вычислим его спектральную плотность:
где

Размерность спектральной плотности периодически повторяющегося сигнала определяется размерностью спектральной плотности непериодического сигнала, из которого формируется периодически повторяющийся сигнал, т.е. [В/Гц].

Первый сомножитель полученного выражения в равенстве (2.16) определяет спектральную плотность ограниченного во времени сигнала и 0 (?), второй - спектральную плотность периодически повторяющейся дельта-функции

Убедимся в этом, вычислив указанную плотность:

При вычислении интеграла использовано фильтрующее свойство дельта-функции (см. приложение 1).

Если периодически повторяющуюся дельта-функцию разложить в ряд Фурье в комплексной форме, то се спектральную плотность можно выразить иначе:

При выводе последней формулы использовано выражение дельта-функции в частотной области. Приравнивая выражения спектральных плотностей, получим

Эта функция равна нулю, если со Ф к(х) ь и равна если со = к(о { . Подставим в (2.16) новое выражение 5 ф (/со):

Спектральная плотность периодически повторяющегося сигнала определяется значениями спектральной плотности ограниченного во времени сигнала г/ 0 (?), отсчитанными через интервал, равный со^ = 2л /Т.

Вычислим значение спектральной плотности ограниченного отрезком времени Т сигнала:

Умножим левую и правую части равенства на коэффициент 2/Т:

где а(/&а>1) - спектр ограниченного во времени сигнала в базисе экспоненциальных функций.

С учетом последней формулы спектральную плотность периодически повторяющегося сигнала запишем в виде

где модуль спектра определяется в базисе экспоненциальных функций формулой (2.9), а спектр фаз - формулой (2.10).

Значения АЧХ и ФЧХ спектральной плотности ограниченного во времени сигнала г/о(0> отсчитанные через интервал (щ = 2п/Т в точках частотной оси кщ, к = 0, ±1, ±2,..., определяют АЧХ и ФЧХ спектральной плотности этого периодического сигнала.

Рассмотрим некоторые свойства спектральной плотности сигнала, удовлетворяющие условию абсолютной интегрируемости.

  • 1. Спектральная плотность (2.14) - это комплексная и непрерывная функция частоты со, определенная в бесконечном интервале частот.
  • 2. АЧХ и ФЧХ спектральной плотности удовлетворяют уравнениям

где +(л)? - выбранные значения частот.

3. Преобразования Фурье (2.14), (2.15) являются линейными преобразованиями. Поэтому спектральная плотность суммы сигналов равна сумме спектральных плотностей этих сигналов, а сумма сигналов определяется обратным преобразованием Фурье от суммы их спектральных плотностей:


где Uj(t) - i- й сигнал; б’/О"оз) - спектральная плотность г-го сигнала.

4. Спектральная плотность сигнала, ограниченная бесконечно малыми интервалами 2лА/(рис. 2.3) вблизи, например, частот -со 0 , со (), определяет гармонический сигнал с бесконечно малой амплитудой.

Убедимся в этом, считая, что из-за малости А/ значения спектральной плотности около частот -ю () , (н () равны соответственно S (-jco 0) = |А(70) 0)| _ - /

Рис. 2.3.

Поскольку в бесконечно малых интервалах спектральная плотность остается постоянной, можно вынести за знак интегралов выражения |50"со 0)|е;ф(10о) и |50"м 0)|е - - ,ф(а)о) :

Как следует из полученной формулы, амплитуда полученного сигнала определяется значением спектральной плотности, функцией (бшл -)/^ и весьма малым диапазоном частот А/. При стремлении Д/ к нулю функция (81 пх)/х стремится к единице, а амплитуда становится равной нулю.

5. Если все составляющие спектральной плотности ограниченного во времени сигнала сдвигаются по фазе на +(л)?о> то этот сиг- нал сдвигается во времени на величину +? 0 . Действительно:

6. При передаче ограниченного во времени сигнала через линейный четырехполюсник, АЧХ которого в полосе пропускания равна постоянной величине К 0 , а фазовая характеристика ср(со) = = -а)? 0 > форма этого сигнала остается неизменной, а сигнал запаздывает во времени на величину? 0:

Решение. Спектральная плотность задержанного на время? 0 импульса равна

где м(?) - импульс, который расположен в начале координат;

Вычисления дают следующий результат:

Запишем эту плотность в виде где

Последнее выражение определяет спектральную плотность сигнала и(?). В диапазоне частот спектральная плотность является положительной величиной, д(со) = = 1. Поэтому в этом диапазоне фазовая характеристика ф(со) = 0, так как (о)) = = со8ф(со) + ^ з1п ср(со).

В диапазоне частот спектральная плотность является отрицательной величиной. Фазовая характеристика в этом диапазоне равна ср(со) = я, так как

АЧХ спектральной плотности задержанного импульса совпадает с АЧХ спектральной плотности сигнала «(?), а ФЧХ определяется выражением

Спектральная плотность прямоугольного импульса г/(?), АЧХ и ФЧХ этой плотности изображены на рис. 2.4.

Рис. 2.4.

Пример 2.3. Вычислить спектральную плотность кодированного сигнала

где ак - элементы кодового слова, равные -1 или 1, т.е. = +1, и 0 (0 - прямоугольный импульс с амплитудой А и длительностью т и.

Решение. Применим формулу (2.14):

После замены переменной , получим

Пример 2.4. Вычислить спектральную плотность периодического сигнала, записанного в виде ряда Фурье в тригонометрической форме [см. формулу (2.11)]. Записать выражения АЧХ и ФЧХ постоянной, синусной и косинусной составляющих этого ряда.

Решение. Функции, определяющие формулу (2.11), - периодические, за исключением постоянной составляющей. Эту составляющую аппроксимируем периодической косинусной функцией с частотой, которая стремится к нулю:

Вычислим спектральную плотность периодического сигнала u(t ) = = a cos fit, записав его в виде

щ(():

Значение первого слагаемого, стоящего в скобках выражения, равно 1, если со = -Q, и равно 0 для других дискретных значений частоты со = kfl, k = 0, 1, ±2, ±3, ±4, .... Значение второго слагаемого равно 1, если со = Q, и равно 0 для других дискретных значений частоты to = kQ, k = 0, -1, ±2, ±3, ±4, .... Учитывая это, найдем спектральную плотность, АЧХ и ФЧХ спектральной плотности периодического сигнала u(t ) = a cos Q?:

Значения АЧХ спектральной плотности в точках частотной оси со = +?2 равны паТ/(2п) = аТ/2.

Значения ФЧХ спектральной плотности гармонического сигнала в точках частотной оси со = равны 0.

По формуле спектральной плотности косинусоидального сигнала можно найти спектральную плотность постоянной составляющей:

АЧХ спектральной плотности постоянной составляющей определяется значением

Вычисление спектральной плотности синусоидального сигнала аналогично вычислению спектральной плотности косинусоидального сигнала.

Запишем периодический сигнал u(t) = bsinQ? в виде

где

Спектральная плотность сигнала и 0 (О:

По найденному выражению найдем спектральную плотность периодического сигнала u(t ) = b sin Qt:

АЧХ спектральной плотности этого сигнала в точках частотной оси со = +П:

Значения ФЧХ спектральной плотности сигнала в точках частотной оси со = +П равны -я/2, п/ 2.

Полученные формулы для спектральных плотностей гармонических сигналов позволяют найти спектральную плотность суммы этих сигналов:

где - модуль спектра, равный амплитуде гармонического

сигнала; ф(П) = -экЛ%(Ь/а) - значение фазы спектра, равное значению начальной фазы этого сигнала.

Ряд Фурье в тригонометрической форме (2.11) содержит бесконечно большое число сумм гармонических сигналов:

Спектральная плотность этой суммы находится по последнему выражению спектральной плотности заменой П = ко)^. Используя эту формулу и формулу спектральной плотности постоянной составляющей, получим выражение спектральной плотности сигнала, записанного в виде ряда Фурье в тригонометрической форме:

где - модуль спектра; ф^о^) = - значение фазы спектра, равное значению начальной фазы гармонического сигнала.

Для периодической последовательности импульсов, приведенной на рис. 2.1,

Спектральная плотность


Вычисленная спектральная плотность является математической моделью периодически повторяющегося видеоимпульса прямоугольной формы в частотной области. График спектральной плотности показан на рис. 2.5. Дельта-функции на этом рисунке условно изображены стрелками.


Рис. 2.5.

импульсов

График содержит информацию о постоянной составляющей и гармонических сигналах, входящих в ряд Фурье в тригонометрической форме.

Пример 2.5. По спектральной плотности, вид которой приведен на рис. 2.6, вычислить выражение для сигнала «(?)

Рис. 2.6.

Решение. Спектральная плотность сигнала ограничена значениями частоты, равными -со в, со в. Найдем сигнал.

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть - напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность - пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

которая полностью совпадает с корреляционной функцией, определяемой по (9.45).

Из рис. 9.5, б, в видно, что чем шире график спектральной плотности тем уже график соответствующей корреляционной функции и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.

ных процесса друг с другом никак не связаны (статистически независимы), то

Rxy (τ) = 0

6.3 Спектральная плотность случайного процесса

Понятие о спектральной плотности связано с разложением стационарного случайного процесса на гармонические составляющие, подобные обычному разложению в ряд Фурье. Это позволяет при расчете автоматических систем, использовать частотные методы анализа.

Спектральная плотность S x (ω) случайного процессаx(t) характеризует спектральный (частотный) состав случайной величины и представляет собой частотную функцию для средних значений квадратов амплитуд гармоник, на которые может быть разложен случайный процесс.

Для стационарного случайного процесса спектральная плотность S x (ω) может быть получена как изображение Фурье корреляционной функцииR x (τ)

Sx (ω )= ∫ Rx (τ )å− j ωτ dτ

С помощью обратного преобразования Фурье можно определить корреляционную функцию через спектральную плотность

Rx (τ )=

∞ Sx (ω )åj ωτ dω

На рисунке 6.3 показаны графики корреляционной функции R x (τ) (смотри рисунок 6.2) и соответствующие им графики спектральной плотности S(ω). Это соотношение аналогично соотношению между переходной и частотной характеристикой системы: чем продолжительнее переходный процесс, тем уже его частотная характеристика. При рассмотрении случайных процессов: чем шире график корреляционной функции (кривые 3, 4) , тем уже график спектральной плотности и наоборот.

Рисунок 6. 3 – Корреляционные функции и соответствующие спектральные плотности центрированных стационарных процессов

В предельном случае, когда случайная величина x(t) является постоянной величиной и корреляционная функция тоже постоянная и равнаD x = a 2

(прямая 1), то спектральная плотность существует только при нулевой частоте и равна

Sx (ω )= 2π a2 δ (ω )

В другом предельном случае, когда случайная величина x(t) является абсолютно случайным процессом (белый шум), то корреляционная функция существует только приτ = 0 (прямая 2). Спектральная плотность такого случайного процесса равномерно распределена по всем частотам и равна

Sx (ω )= C2

Для непериодического случайного процесса (кривые 3, 4) корреляционная функция аппроксимируется R (τ )= D x å − α τ , тогда спектральная плотность определяется

Sx (ω )= 2D x α

α 2+ ω 2

Если случайная величина x(t) имеет периодическую составляющую при ω = ω0 , то спектральная плотность при частотах ω = + ω0 и ω = - ω0 будет иметь соответствующие пики (кривая 5). Корреляционная функция такого слу-

чайного процесса аппроксимируется

R(τ ) = Dx å− α

cos βτ . Спектральная

плотность определяется

Dx α

Dx α

S÷ (ω )=

α2 + (ω+ β) 2

α2 + (ω− β) 2

Одним из основных параметров работы системы при случайных воздействиях является среднеквадратичное отклонение, которое характеризует отклонение случайной величины от его среднего значения. Если известна спектральная плотность сигнала S(ω) , то приτ = 0 можно определить дисперсию

Rx (0)=

∫ Sx (ω )åj ω 0 dω =

∫ Sx (ω ) dω

Тогда среднеквадратичное отклонение (СКО)

σ x = Dx = Rx (0)

По полученным основным характеристикам случайного процесса исследование автоматической системы на статистическую точность работы проводят

в следующей последовательности:

- по заданному случайному процессу определяют его корреляционную

функцию R x (τ) ;

- по корреляционной функции R x (τ) определяют спектральную плотность сигнала на входе системыS x (ω) ;

- по известной частотной передаточной функции системы W(jω) определяют спектральную плотность на выходе системыS y (ω) ;

- по полученной спектральной плотности на выходе системы S y (ω) определяют корреляционную функцию выходного сигналаR y (τ) ;

По корреляционной функции выходного сигнала R y (τ) определяют дисперсиюD y = R y (0) и среднеквадратичное отклонение регулируемой величины.

6.4 Анализ точности работы линейной системы при случайном воздействии

Если входное воздействие, приложенное к линейной системе, является случайным стационарным процессом x(t), то выходная величина y(t) то же будет случайным стационарным процессом. При этом предполагается, что рассматриваемая система устойчива. Ясно, что в этих условиях судить о точности работы системы нужно не по мгновенным значениям выходной величины, а по некоторым средним значениям, которые вычисляются по спектральной плотности выходного сигналаS y (ω) .

Пусть спектральная плотность входного сигнала S x (ω) , тогда спектральная плотность выходного сигналаS y (ω) определяется (без вывода)

S y (ω )= W (j ω )2 S x (ω )

Спектральная плотность выходного сигнала автоматической системы равна спектральной плотности входного сигнала умноженного на квадрат модуля частотной характеристики исследуемой системы.

Закон распределения случайной величины при прохождении ее через автоматическую систему в общем случае может меняться. Но если на входе линейной системы закон распределения нормальный, то и на выходе системы можно принять нормальное распределение.

Пусть математическое ожидание m x стационарного процессаx(t), на

входе линейной системы не равно нулю, тогда на основании принципа суперпозиции для линейных систем этот случайный процесс на входе системы можно представить

x1 (t)= mx + xo c (t),

где x o (t ) - центрированный случайный процесс на входе системы.

В этом случае математическое ожидание на выходе системы m y определяется, еслиm x умножить на частотную передаточную функцию приω =0

my = W(0) mx

Когда на систему одновременно действует случайный сигнал управления x a (t) и случайный сигнал возмущенияx n (t), то спектральная плотность ошибки регулированияS oш (ω) определяется

Sîø (ω )= Wa (jω )2 Sa (ω )+ Wn (jω )2 Sn (ω ),

где S a (ω) - спектральная плотность сигнала управления;S n (ω) - спектральная плотность сигнала возмущения;

W a (jω) - передаточная функция по ошибке регулирования;W n (jω) - передаточная функция по возмущению.

Дисперсия ошибки регулирования D y и общее среднеквадратичное ее значениеσ у определяется по формулам

Dy = 1 / 2π ∞ ∫ [ Wa (jω )2 Sa (ω )+ Wn (jω )2 Sn (ω )] dω ,

При подаче на вход системы случайных сигналов управления и возмущения общая среднеквадратичная ошибка определяется по теореме Пифагора по СКО управления и СКО возмущения

Отметим преимущества и недостатки оценки точности работы системы по среднеквадратичной ошибке регулирования (СКО). С помощью СКО можно оценить вероятность появления ошибки сверху. Так оценивает усредненное, статистическое значение ошибки, а не величина мгновенного значения ошибки. Поэтому для систем, где недопустимы большие ошибки (хотя и кратковременные) применяется другой метод расчета. Кроме этого, полученное СКО справедливо для больших промежутков времени (при T → ∞ ), а ошибки, связанные с кратковременным переходным процессом, практически не учитываются.

Если спектральные плотности и частотные передаточные функции заданы в виде дробно-рациональных функций от ω, то можно сразу определить дисперсию выходного сигналаD y , образно говоря, минуя определенияS y (ω) выходного сигнала иR y (τ) выходного сигнала. Значение дисперсии выходного сигнала определяется по табличному интегралуJ n в зависимости от порядка характеристического уравнения системы. Для этого подинтегральное выражение приводится к табличному виду

1 ∞

1 ∞ G(ω )dω

J n=

W(jω )

S(ω )dω =

−∫ ∞

H(jω )

где G(ω )= b0 ω 2n − 2 + b1 ω 2n − 4 + ...+ bn − 1 ; H(jω )= a0 (jω )n + a1 (jω )n − 1 + ...+ an.

Покажем формулы вычисления табличного интеграла по коэффициентам передаточной функции

J 1=

− b 0 a 2 + b 1 a 0 ;

2a0 a1

2a0 a1 a2

J 3=

− b 0a 2a 3+ b 1a 0a 3− b 2a 0a 1

2a0 a3 (a1 a2 − a0 a3 )

Для более высокой степени характеристического уравнения вычисления этих табличных интегралов становится громоздким. Поэтому используются другие методы статистического анализа.

Параметры системы, выбранные по критерию минимизации СКО необходимо оценить по возможности их технической реализации и, кроме этого, оценить изменившиеся динамические характеристики системы.

Пример 6.1 –По критерию минимизации СКО Определить оптимальное значение коэффициента усиленияK y для заданной линейной следящей системы (рисунок 6.4). На вход системы поступает случайный сигнал, управляющая

спектральная плотность которого S α = (2 D γ α ) . Одновременно на вход посту-

α 2+ ω 2

пают случайные помехи в виде белого шума со спектральной плотностью S n (ω) =С 2

Определяем частотную

передаточную

функцию по ошибке управления

W (jω )=

1 + Ky

/ jω jω + Ky

Рисунок 6.4 – Структурная

схема системы к примеру 6.1

2 Частотная передаточная функция замк-

нутой системы

W (jω )=

K y /

1 + Ky

/ jω jω + Ky

3 Дисперсия ошибки регулирования по управлению

1 ∞

2 2D γ α

2Dγ α ∞

ω2 d ω

2 π−∞ ∫

2 π−∞ ∫

jω + Ky

α 2+ ω 2

(jω + Ky )(α + jω )

2Dγ α ∞

ω2 d ω

α J

2 π−∞ ∫

(j ω )2

+ (K y +α ) j ω +K y α

4 Полученное подинтегральное выражение соответствует табличному интегралу J 2

G(ω) = ω2 ,

+α ) j ω +K

b0 = 1, b1 = 0,

H(ω )= (jω ) 2 +

1 , a

+ α , a

− b a

K y α

J 2=

2(Ky + α ) Ky α

2(Ky

+α )

2a0 a1 a2

5 Это значение J 2 подставим в формулуD ош

D îø=

2Dγ α

Dγ α

2(Ky + α ) =

K y + α

6 Дисперсия ошибки регулирования от случайных помех в виде белого шума

2 ∞

D пом=

−∞∫

С2 dω =

−∞∫

С2 Ky 2 J1

jω + Ky

jω + Ky

7 Полученное подинтегральное выражение соответствует табличному интегралу J 1

H(ω )= jω + Ky , a0 = 1, a1 = Ky

J 1=

2a0 a1

2K y

Это значение J 1 подставим в формулуD ïîì

С2 Ky

С2 Ky

2K y

Дисперсия суммарной ошибки D общ

D α

С2 Ky

D +D

K y + α

10 Для определения оптимального значения K y , при котором суммарная ошибка минимальная, построим графикиD ош , D пом , D общ в зависимости отK y (рисунок 6.5).

D ошD помD общ

D общ

D пом

D ош

К оптК у

Рисунок 6.5 – Графическое определение оптимального значения K y к примеру 6.1

По графикам видно, что с увеличением K y дисперсия ошибки по управлениюD ош уменьшается, а дисперсия ошибки от помехD пом увеличивается. При большем коэффициенте усиления помехи свободнее проходят через систему. В зависимости от степени неопределенности сигнала управления (коэффициент α) и от интенсивности помех (коэффициент С2 ) можно получить разное оптимальное значениеK y .

6.5 Особенности расчета случайного процесса в нелинейной системе

Если случайный сигнал проходит нелинейное звено, то расчет такой системы существенно усложняется по сравнению с расчетом прохождения случайного сигнала через линейное звено. На рисунке 6.6 показано прохождение случайного сигнала через нелинейный элемент с насыщением F(x).

а - прохождение случай-

ного сигнала через нели-

нейный элемент;

б - случайный входной

в - нелинейный элемент с

насыщением;

г - выходной сигнал по-

сле нелинейного элемен-

б а

Рисунок 6.6 – Прохождение случайного сигнала через нелинейный элемент

В данном примере за счет участка насыщения случайный сигнал не полностью проходит через нелинейный элемент и в результате дисперсия выходного сигнала или «коридор», в пределах которого размещаются выходной сигнал, будет меньше. На рисунке 6.6 показано, что часть случайного входного сигнала попала на зону насыщения и не прошла через нелинейное звено. Это привело к изменению дисперсии выходного сигнала (она уменьшается) и к уменьшению его среднего значения. Уточняем, уменьшение этих параметров выходного случайного сигнала произошло не за счет коэффициента усиления, а из-за нелинейности характеристики элемента в виде зоны насыщения.

Рассмотрим вначале структурную схему линейной системы управления (рисунок 6.7), на вход который подается случайный сигнал

x(t) = mx (t)+ xo (t)

где m x - математическое ожидание входного сигнала;

x ° (t) - помехи и шумы входного сигнала, которые характеризуются дисперсией(D x ).

В этой линейной системе, используя принцип суперпозиции, можно отдельно и независимо друг от друга определить математическое ожидание вы-

ходного сигнала m

my (t)

yт (t)

x° (t)

y° (t)

y q (t) - действительный выходной

y т (t) -теоретически рассчитанный выходной сигнал

Рисунок 6.7 – Прохождение случайного сигнала через линейную систему управления

yq (t)

mx (t)

my (t)

K0 (mx , σx )W(0)

ym (t)

K1 (mx , σx )W(p)

Рисунок 6.8 – Прохождение случайного сигнала через нелинейное звено

сунок 6.7). Этот расчет показан в подразделе 6.4 и в примере 6.1.

Если такой же случайный сигнал будет подан на нелинейную систему управления (рисунок 6.8), то математическое ожидание на выходе системы зависит от изменения дисперсии, а изменение дисперсии зависит от изменения математического ожидания. Эти две характеристики случайного процесса становится взаимно связанны. Обозначим через K 0 (m x , σ x ) эту взаимозависимость математического ожидания от дисперсии входного сигналаD x. . При расчете удобнее вместо дисперсииD x использовать среднеквадратичное отклонениеσ x .

Соответственно обозначим через K 1 (m x , σ x ) взаимосвязь среднеквадратичного отклонения от математического ожидания. Тогда

ym (t)= my + yo (t)= K0 mx + K1 xo (t)

Для нахождения этих коэффициентов K 0 иK 1 при расчете прохождения сигнала через нелинейное звено используетсяметод стати-

стической линеаризации нелинейного элемента

Метод статистической линеаризации основан на замене нелинейного элемента статистически эквивалентным линеаризованным элементом.

Этот метод статистической линеаризации по общей идее (аналогичен методу гармонической линеаризации.

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде (t ). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s (t ) следует в выражении (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя,т.к.спектр становится сплошным.

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром , а ее аргумент – фазовым спектром .

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста - в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐтов - каждый отсчѐт записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации-восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k - номер отсчета; - значение сигнала в точках отсчета - верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье:



© dagexpo.ru, 2024
Стоматологический сайт